Matches in SemOpenAlex for { <https://semopenalex.org/work/W3038907110> ?p ?o ?g. }
- W3038907110 endingPage "15" @default.
- W3038907110 startingPage "15" @default.
- W3038907110 abstract "Resolving the phase structure of neutral hydrogen (HI) is crucial for understanding the life cycle of the interstellar medium (ISM). However, accurate measurements of HI temperature and density are limited by the availability of background continuum sources for measuring HI absorption. Here we test the use of deep learning for extracting HI properties over large areas without optical depth information. We train a 1D convolutional neural network using synthetic observations of 3D numerical simulations of the ISM to predict the fraction of cold neutral medium (f_CNM) and the correction to the optically-thin HI column density for optical depth (R_HI) from $21rm,cm$ emission alone. We restrict our analysis to high Galactic latitudes ($|b|>30 deg), where the complexity of spectral line profiles is minimized. We verify that the network accurately predicts f_CNM and R_HI by comparing the results with direct constraints from 21 cm absorption. By applying the network to the GALFA-HI survey, we generate large-area maps of f_CNM and R_HI. Although the overall contribution to the total HI column of cold neutral medium (CNM)-rich structures is small (~5%), we find that these structures are ubiquitous. Our results are consistent with the picture that small-scale structures observed in 21 cm emission aligned with the magnetic field are dominated by CNM. Finally, we demonstrate that the observed correlation between HI column density and dust reddening (E(B-V)) declines with increasing R_HI, indicating that future efforts to quantify foreground Galactic E(B-V) using HI, even at high latitudes, should increase fidelity by accounting for HI phase structure." @default.
- W3038907110 created "2020-07-10" @default.
- W3038907110 creator A5053572842 @default.
- W3038907110 creator A5056292916 @default.
- W3038907110 creator A5064943585 @default.
- W3038907110 date "2020-08-07" @default.
- W3038907110 modified "2023-10-15" @default.
- W3038907110 title "Extracting the Cold Neutral Medium from H i Emission with Deep Learning: Implications for Galactic Foregrounds at High Latitude" @default.
- W3038907110 cites W1624693442 @default.
- W3038907110 cites W1804638373 @default.
- W3038907110 cites W1976579441 @default.
- W3038907110 cites W1976676831 @default.
- W3038907110 cites W1978855597 @default.
- W3038907110 cites W1980118658 @default.
- W3038907110 cites W1984278231 @default.
- W3038907110 cites W1988213367 @default.
- W3038907110 cites W1990997867 @default.
- W3038907110 cites W2000336847 @default.
- W3038907110 cites W2003117448 @default.
- W3038907110 cites W2007302760 @default.
- W3038907110 cites W2009802717 @default.
- W3038907110 cites W2011301426 @default.
- W3038907110 cites W2019579421 @default.
- W3038907110 cites W2021882240 @default.
- W3038907110 cites W2031603500 @default.
- W3038907110 cites W2040168280 @default.
- W3038907110 cites W2044738244 @default.
- W3038907110 cites W2052926897 @default.
- W3038907110 cites W2061226721 @default.
- W3038907110 cites W2066062151 @default.
- W3038907110 cites W2072386135 @default.
- W3038907110 cites W2078091601 @default.
- W3038907110 cites W2091630436 @default.
- W3038907110 cites W2093332946 @default.
- W3038907110 cites W2101926813 @default.
- W3038907110 cites W2111817932 @default.
- W3038907110 cites W2112796928 @default.
- W3038907110 cites W2116362607 @default.
- W3038907110 cites W2135625048 @default.
- W3038907110 cites W2137136785 @default.
- W3038907110 cites W2140888726 @default.
- W3038907110 cites W2146292423 @default.
- W3038907110 cites W2157341649 @default.
- W3038907110 cites W2159739807 @default.
- W3038907110 cites W2199495426 @default.
- W3038907110 cites W2267433906 @default.
- W3038907110 cites W2535532860 @default.
- W3038907110 cites W2562512660 @default.
- W3038907110 cites W2584194617 @default.
- W3038907110 cites W2620665718 @default.
- W3038907110 cites W2757022617 @default.
- W3038907110 cites W2776809654 @default.
- W3038907110 cites W2803183928 @default.
- W3038907110 cites W2806396281 @default.
- W3038907110 cites W2886661855 @default.
- W3038907110 cites W2948854433 @default.
- W3038907110 cites W3013031638 @default.
- W3038907110 cites W3098011059 @default.
- W3038907110 cites W3099344294 @default.
- W3038907110 cites W3099428623 @default.
- W3038907110 cites W3099488619 @default.
- W3038907110 cites W3100494107 @default.
- W3038907110 cites W3101128530 @default.
- W3038907110 cites W3101952285 @default.
- W3038907110 cites W3102163329 @default.
- W3038907110 cites W3102704698 @default.
- W3038907110 cites W3103145119 @default.
- W3038907110 cites W3103183765 @default.
- W3038907110 cites W3103290085 @default.
- W3038907110 cites W3104318433 @default.
- W3038907110 cites W3104639463 @default.
- W3038907110 cites W3104669358 @default.
- W3038907110 cites W3105256871 @default.
- W3038907110 cites W3105824481 @default.
- W3038907110 cites W3122039382 @default.
- W3038907110 cites W3125049485 @default.
- W3038907110 cites W4288339175 @default.
- W3038907110 cites W4292400014 @default.
- W3038907110 cites W4292923859 @default.
- W3038907110 doi "https://doi.org/10.3847/1538-4357/aba19b" @default.
- W3038907110 hasPublicationYear "2020" @default.
- W3038907110 type Work @default.
- W3038907110 sameAs 3038907110 @default.
- W3038907110 citedByCount "18" @default.
- W3038907110 countsByYear W30389071102020 @default.
- W3038907110 countsByYear W30389071102021 @default.
- W3038907110 countsByYear W30389071102022 @default.
- W3038907110 countsByYear W30389071102023 @default.
- W3038907110 crossrefType "journal-article" @default.
- W3038907110 hasAuthorship W3038907110A5053572842 @default.
- W3038907110 hasAuthorship W3038907110A5056292916 @default.
- W3038907110 hasAuthorship W3038907110A5064943585 @default.
- W3038907110 hasBestOaLocation W30389071101 @default.
- W3038907110 hasConcept C120665830 @default.
- W3038907110 hasConcept C121332964 @default.
- W3038907110 hasConcept C122523270 @default.
- W3038907110 hasConcept C125287762 @default.
- W3038907110 hasConcept C1276947 @default.