Matches in SemOpenAlex for { <https://semopenalex.org/work/W3038925693> ?p ?o ?g. }
- W3038925693 abstract "The COVID-19 pandemia due to the SARS-CoV-2 coronavirus, in its first 4 months since its outbreak, has to date reached more than 200 countries worldwide with more than 2 million confirmed cases (probably a much higher number of infected), and almost 200,000 deaths. Amplification of viral RNA by (real time) reverse transcription polymerase chain reaction (rRT-PCR) is the current gold standard test for confirmation of infection, although it presents known shortcomings: long turnaround times (3-4 hours to generate results), potential shortage of reagents, false-negative rates as large as 15-20%, the need for certified laboratories, expensive equipment and trained personnel. Thus there is a need for alternative, faster, less expensive and more accessible tests. We developed two machine learning classification models using hematochemical values from routine blood exams (namely: white blood cells counts, and the platelets, CRP, AST, ALT, GGT, ALP, LDH plasma levels) drawn from 279 patients who, after being admitted to the San Raffaele Hospital (Milan, Italy) emergency-room with COVID-19 symptoms, were screened with the rRT-PCR test performed on respiratory tract specimens. Of these patients, 177 resulted positive, whereas 102 received a negative response. We have developed two machine learning models, to discriminate between patients who are either positive or negative to the SARS-CoV-2: their accuracy ranges between 82% and 86%, and sensitivity between 92% e 95%, so comparably well with respect to the gold standard. We also developed an interpretable Decision Tree model as a simple decision aid for clinician interpreting blood tests (even off-line) for COVID-19 suspect cases. This study demonstrated the feasibility and clinical soundness of using blood tests analysis and machine learning as an alternative to rRT-PCR for identifying COVID-19 positive patients. This is especially useful in those countries, like developing ones, suffering from shortages of rRT-PCR reagents and specialized laboratories. We made available a Web-based tool for clinical reference and evaluation (This tool is available at https://covid19-blood-ml.herokuapp.com/ )." @default.
- W3038925693 created "2020-07-10" @default.
- W3038925693 creator A5000056747 @default.
- W3038925693 creator A5023849668 @default.
- W3038925693 creator A5031294467 @default.
- W3038925693 creator A5045931370 @default.
- W3038925693 creator A5059620963 @default.
- W3038925693 creator A5091665447 @default.
- W3038925693 date "2020-07-01" @default.
- W3038925693 modified "2023-10-16" @default.
- W3038925693 title "Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study" @default.
- W3038925693 cites W1924689489 @default.
- W3038925693 cites W1993452522 @default.
- W3038925693 cites W2011301426 @default.
- W3038925693 cites W2056132907 @default.
- W3038925693 cites W2115098571 @default.
- W3038925693 cites W2125283600 @default.
- W3038925693 cites W2134826392 @default.
- W3038925693 cites W2141007997 @default.
- W3038925693 cites W2498119267 @default.
- W3038925693 cites W2787894218 @default.
- W3038925693 cites W2888580379 @default.
- W3038925693 cites W2941140577 @default.
- W3038925693 cites W2973569990 @default.
- W3038925693 cites W3001195213 @default.
- W3038925693 cites W3001821705 @default.
- W3038925693 cites W3002108456 @default.
- W3038925693 cites W3006110666 @default.
- W3038925693 cites W3006643024 @default.
- W3038925693 cites W3007104924 @default.
- W3038925693 cites W3007497549 @default.
- W3038925693 cites W3009859788 @default.
- W3038925693 cites W3010026184 @default.
- W3038925693 cites W3010260666 @default.
- W3038925693 cites W3010522809 @default.
- W3038925693 cites W3010609078 @default.
- W3038925693 cites W3010637630 @default.
- W3038925693 cites W3010719113 @default.
- W3038925693 cites W3011149445 @default.
- W3038925693 cites W3011466591 @default.
- W3038925693 cites W3011508332 @default.
- W3038925693 cites W3012877202 @default.
- W3038925693 cites W3013042152 @default.
- W3038925693 cites W3013215798 @default.
- W3038925693 cites W3013601031 @default.
- W3038925693 cites W3014322255 @default.
- W3038925693 cites W3014524604 @default.
- W3038925693 cites W3016053819 @default.
- W3038925693 cites W3016384104 @default.
- W3038925693 cites W3016667461 @default.
- W3038925693 cites W3025948831 @default.
- W3038925693 cites W3123904962 @default.
- W3038925693 cites W3165656738 @default.
- W3038925693 cites W92469554 @default.
- W3038925693 doi "https://doi.org/10.1007/s10916-020-01597-4" @default.
- W3038925693 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7326624" @default.
- W3038925693 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32607737" @default.
- W3038925693 hasPublicationYear "2020" @default.
- W3038925693 type Work @default.
- W3038925693 sameAs 3038925693 @default.
- W3038925693 citedByCount "224" @default.
- W3038925693 countsByYear W30389256932020 @default.
- W3038925693 countsByYear W30389256932021 @default.
- W3038925693 countsByYear W30389256932022 @default.
- W3038925693 countsByYear W30389256932023 @default.
- W3038925693 crossrefType "journal-article" @default.
- W3038925693 hasAuthorship W3038925693A5000056747 @default.
- W3038925693 hasAuthorship W3038925693A5023849668 @default.
- W3038925693 hasAuthorship W3038925693A5031294467 @default.
- W3038925693 hasAuthorship W3038925693A5045931370 @default.
- W3038925693 hasAuthorship W3038925693A5059620963 @default.
- W3038925693 hasAuthorship W3038925693A5091665447 @default.
- W3038925693 hasBestOaLocation W30389256931 @default.
- W3038925693 hasConcept C119857082 @default.
- W3038925693 hasConcept C126322002 @default.
- W3038925693 hasConcept C138885662 @default.
- W3038925693 hasConcept C159047783 @default.
- W3038925693 hasConcept C177713679 @default.
- W3038925693 hasConcept C194051981 @default.
- W3038925693 hasConcept C194828623 @default.
- W3038925693 hasConcept C2778137410 @default.
- W3038925693 hasConcept C2779134260 @default.
- W3038925693 hasConcept C3007834351 @default.
- W3038925693 hasConcept C3008058167 @default.
- W3038925693 hasConcept C40993552 @default.
- W3038925693 hasConcept C41008148 @default.
- W3038925693 hasConcept C41895202 @default.
- W3038925693 hasConcept C524204448 @default.
- W3038925693 hasConcept C71924100 @default.
- W3038925693 hasConcept C84525736 @default.
- W3038925693 hasConceptScore W3038925693C119857082 @default.
- W3038925693 hasConceptScore W3038925693C126322002 @default.
- W3038925693 hasConceptScore W3038925693C138885662 @default.
- W3038925693 hasConceptScore W3038925693C159047783 @default.
- W3038925693 hasConceptScore W3038925693C177713679 @default.
- W3038925693 hasConceptScore W3038925693C194051981 @default.
- W3038925693 hasConceptScore W3038925693C194828623 @default.
- W3038925693 hasConceptScore W3038925693C2778137410 @default.
- W3038925693 hasConceptScore W3038925693C2779134260 @default.
- W3038925693 hasConceptScore W3038925693C3007834351 @default.