Matches in SemOpenAlex for { <https://semopenalex.org/work/W3038970853> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3038970853 abstract "Data from the financial markets are a source of challenging inference problems. Machine learning tools are increasingly used for the analysis of financial data. They are observed to provide more accurate models than classical analytical models that depend on specific assumptions. In this work, we ask if the inclusion of external (exogenous) macro-economic information into a model fitting procedure may be useful to improve the quality of analysis and predictions of financial time series. This dissertation explores this case by addressing several problems in empirical finance which are tackled by using a range of machine learning methods with exogenous macro-economic data. First, we study a non-parametric approach to mapping the price of traded option contracts to the value of the underlying asset and the time to maturity. We explore if additional information would be helpful in improving this mapping. We show that this is the case, and further we show that there is a relationship between volume traded and volatility of an asset that is not apparent in the raw data, but it is seen through their influence on the prices of options. Then, we consider the non-negative matrix factorization (NMF) method and extend it with eXogenous information to specify a new model (XNMF). We present a learning algorithm for it and illustrate its better performance than NMF using equity prices and underlying macroeconomic variables. We show how residual signals arising in time series analysis can be explained by a sparse regression taken over related macroeconomic variables (the Kalman LagLasso model) to help in financial analysis. A comparison between stock index values and Bitcoin using this model illustrates clear underlying differences between them. Finally, we study a powerful representation learning framework popular in machine learning (VAE) and extend it with inductive exogenous variable. Thus, we created a probabilistic XNMF (PAE-XNMF) that is able to generate financial data, with lower reconstruction error than a probabilistic NMF; and Recurrent Neural Networks, specifically, the Long Short Term Memory model (LSTM). We show that LSTM captures time series dynamics. Then we combined LSTM with attention mechanism to gain more interpretability of the influence of macro-economic data on predicting financial time series." @default.
- W3038970853 created "2020-07-10" @default.
- W3038970853 creator A5017972170 @default.
- W3038970853 creator A5086036377 @default.
- W3038970853 date "2020-02-01" @default.
- W3038970853 modified "2023-09-23" @default.
- W3038970853 title "On quantifying the role of exogenous macro-economic information in machine learning for modelling financial data" @default.
- W3038970853 hasPublicationYear "2020" @default.
- W3038970853 type Work @default.
- W3038970853 sameAs 3038970853 @default.
- W3038970853 citedByCount "0" @default.
- W3038970853 crossrefType "dissertation" @default.
- W3038970853 hasAuthorship W3038970853A5017972170 @default.
- W3038970853 hasAuthorship W3038970853A5086036377 @default.
- W3038970853 hasConcept C10138342 @default.
- W3038970853 hasConcept C107673813 @default.
- W3038970853 hasConcept C119857082 @default.
- W3038970853 hasConcept C121332964 @default.
- W3038970853 hasConcept C149782125 @default.
- W3038970853 hasConcept C152671427 @default.
- W3038970853 hasConcept C154945302 @default.
- W3038970853 hasConcept C158693339 @default.
- W3038970853 hasConcept C160234255 @default.
- W3038970853 hasConcept C162324750 @default.
- W3038970853 hasConcept C166955791 @default.
- W3038970853 hasConcept C19244329 @default.
- W3038970853 hasConcept C199360897 @default.
- W3038970853 hasConcept C41008148 @default.
- W3038970853 hasConcept C42355184 @default.
- W3038970853 hasConcept C62520636 @default.
- W3038970853 hasConceptScore W3038970853C10138342 @default.
- W3038970853 hasConceptScore W3038970853C107673813 @default.
- W3038970853 hasConceptScore W3038970853C119857082 @default.
- W3038970853 hasConceptScore W3038970853C121332964 @default.
- W3038970853 hasConceptScore W3038970853C149782125 @default.
- W3038970853 hasConceptScore W3038970853C152671427 @default.
- W3038970853 hasConceptScore W3038970853C154945302 @default.
- W3038970853 hasConceptScore W3038970853C158693339 @default.
- W3038970853 hasConceptScore W3038970853C160234255 @default.
- W3038970853 hasConceptScore W3038970853C162324750 @default.
- W3038970853 hasConceptScore W3038970853C166955791 @default.
- W3038970853 hasConceptScore W3038970853C19244329 @default.
- W3038970853 hasConceptScore W3038970853C199360897 @default.
- W3038970853 hasConceptScore W3038970853C41008148 @default.
- W3038970853 hasConceptScore W3038970853C42355184 @default.
- W3038970853 hasConceptScore W3038970853C62520636 @default.
- W3038970853 hasLocation W30389708531 @default.
- W3038970853 hasOpenAccess W3038970853 @default.
- W3038970853 hasPrimaryLocation W30389708531 @default.
- W3038970853 hasRelatedWork W1541734081 @default.
- W3038970853 hasRelatedWork W1655284544 @default.
- W3038970853 hasRelatedWork W2138731566 @default.
- W3038970853 hasRelatedWork W2139581634 @default.
- W3038970853 hasRelatedWork W2309452438 @default.
- W3038970853 hasRelatedWork W2613403962 @default.
- W3038970853 hasRelatedWork W2625358915 @default.
- W3038970853 hasRelatedWork W2895564844 @default.
- W3038970853 hasRelatedWork W2900156316 @default.
- W3038970853 hasRelatedWork W2927690792 @default.
- W3038970853 hasRelatedWork W2951241921 @default.
- W3038970853 hasRelatedWork W2965168328 @default.
- W3038970853 hasRelatedWork W3106210107 @default.
- W3038970853 hasRelatedWork W3122234063 @default.
- W3038970853 hasRelatedWork W3123017647 @default.
- W3038970853 hasRelatedWork W3170345269 @default.
- W3038970853 hasRelatedWork W3176553972 @default.
- W3038970853 hasRelatedWork W3176863412 @default.
- W3038970853 hasRelatedWork W81107170 @default.
- W3038970853 hasRelatedWork W1915694674 @default.
- W3038970853 isParatext "false" @default.
- W3038970853 isRetracted "false" @default.
- W3038970853 magId "3038970853" @default.
- W3038970853 workType "dissertation" @default.