Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039026075> ?p ?o ?g. }
- W3039026075 abstract "Automated QRS detection methods depend on the ECG data which is sampled at a certain frequency, irrespective of filter-based traditional methods or convolutional network (CNN) based deep learning methods. These methods require a selection of the sampling frequency at which they operate in the very first place. While working with data from two different datasets, which are sampled at different frequencies, often, data from both the datasets may need to resample at a common target frequency, which may be the frequency of either of the datasets or could be a different one. However, choosing data sampled at a certain frequency may have an impact on the model's generalisation capacity, and complexity. There exist some studies that investigate the effects of ECG sample frequencies on traditional filter-based methods, however, an extensive study of the effect of ECG sample frequency on deep learning-based models (convolutional networks), exploring their generalisability and complexity is yet to be explored. This experimental research investigates the impact of six different sample frequencies (50, 100, 250, 500, 1000, and 2000Hz) on four different convolutional network-based models' generalisability and complexity in order to form a basis to decide on an appropriate sample frequency for the QRS detection task for a particular performance requirement. Intra-database tests report an accuracy improvement no more than approximately 0.6% from 100Hz to 250Hz and the shorter interquartile range for those two frequencies for all CNN-based models. The findings reveal that convolutional network-based deep learning models are capable of scoring higher levels of detection accuracies on ECG signals sampled at frequencies as low as 100Hz or 250Hz while maintaining lower model complexity (number of trainable parameters and training time)." @default.
- W3039026075 created "2020-07-10" @default.
- W3039026075 creator A5001203013 @default.
- W3039026075 creator A5019483138 @default.
- W3039026075 creator A5048317892 @default.
- W3039026075 date "2020-07-04" @default.
- W3039026075 modified "2023-10-11" @default.
- W3039026075 title "Choosing a sampling frequency for ECG QRS detection using convolutional networks." @default.
- W3039026075 cites W1855879034 @default.
- W3039026075 cites W1903029394 @default.
- W3039026075 cites W2054421446 @default.
- W3039026075 cites W2083812645 @default.
- W3039026075 cites W2091509523 @default.
- W3039026075 cites W2099619765 @default.
- W3039026075 cites W2103308415 @default.
- W3039026075 cites W2160439670 @default.
- W3039026075 cites W2162800060 @default.
- W3039026075 cites W2166704538 @default.
- W3039026075 cites W2169785732 @default.
- W3039026075 cites W2194775991 @default.
- W3039026075 cites W2296285906 @default.
- W3039026075 cites W2551393996 @default.
- W3039026075 cites W2620050178 @default.
- W3039026075 cites W2783443423 @default.
- W3039026075 cites W2798365843 @default.
- W3039026075 cites W2827978565 @default.
- W3039026075 cites W2889042945 @default.
- W3039026075 cites W2902644322 @default.
- W3039026075 cites W2919115771 @default.
- W3039026075 cites W2961074100 @default.
- W3039026075 cites W2963446712 @default.
- W3039026075 cites W2969771517 @default.
- W3039026075 hasPublicationYear "2020" @default.
- W3039026075 type Work @default.
- W3039026075 sameAs 3039026075 @default.
- W3039026075 citedByCount "0" @default.
- W3039026075 crossrefType "posted-content" @default.
- W3039026075 hasAuthorship W3039026075A5001203013 @default.
- W3039026075 hasAuthorship W3039026075A5019483138 @default.
- W3039026075 hasAuthorship W3039026075A5048317892 @default.
- W3039026075 hasConcept C105795698 @default.
- W3039026075 hasConcept C106131492 @default.
- W3039026075 hasConcept C108583219 @default.
- W3039026075 hasConcept C111773187 @default.
- W3039026075 hasConcept C119857082 @default.
- W3039026075 hasConcept C124101348 @default.
- W3039026075 hasConcept C127413603 @default.
- W3039026075 hasConcept C129848803 @default.
- W3039026075 hasConcept C140779682 @default.
- W3039026075 hasConcept C146978453 @default.
- W3039026075 hasConcept C153180895 @default.
- W3039026075 hasConcept C154945302 @default.
- W3039026075 hasConcept C164705383 @default.
- W3039026075 hasConcept C185592680 @default.
- W3039026075 hasConcept C198531522 @default.
- W3039026075 hasConcept C204323151 @default.
- W3039026075 hasConcept C31972630 @default.
- W3039026075 hasConcept C33923547 @default.
- W3039026075 hasConcept C41008148 @default.
- W3039026075 hasConcept C43617362 @default.
- W3039026075 hasConcept C71924100 @default.
- W3039026075 hasConcept C81363708 @default.
- W3039026075 hasConceptScore W3039026075C105795698 @default.
- W3039026075 hasConceptScore W3039026075C106131492 @default.
- W3039026075 hasConceptScore W3039026075C108583219 @default.
- W3039026075 hasConceptScore W3039026075C111773187 @default.
- W3039026075 hasConceptScore W3039026075C119857082 @default.
- W3039026075 hasConceptScore W3039026075C124101348 @default.
- W3039026075 hasConceptScore W3039026075C127413603 @default.
- W3039026075 hasConceptScore W3039026075C129848803 @default.
- W3039026075 hasConceptScore W3039026075C140779682 @default.
- W3039026075 hasConceptScore W3039026075C146978453 @default.
- W3039026075 hasConceptScore W3039026075C153180895 @default.
- W3039026075 hasConceptScore W3039026075C154945302 @default.
- W3039026075 hasConceptScore W3039026075C164705383 @default.
- W3039026075 hasConceptScore W3039026075C185592680 @default.
- W3039026075 hasConceptScore W3039026075C198531522 @default.
- W3039026075 hasConceptScore W3039026075C204323151 @default.
- W3039026075 hasConceptScore W3039026075C31972630 @default.
- W3039026075 hasConceptScore W3039026075C33923547 @default.
- W3039026075 hasConceptScore W3039026075C41008148 @default.
- W3039026075 hasConceptScore W3039026075C43617362 @default.
- W3039026075 hasConceptScore W3039026075C71924100 @default.
- W3039026075 hasConceptScore W3039026075C81363708 @default.
- W3039026075 hasLocation W30390260751 @default.
- W3039026075 hasOpenAccess W3039026075 @default.
- W3039026075 hasPrimaryLocation W30390260751 @default.
- W3039026075 hasRelatedWork W1985214634 @default.
- W3039026075 hasRelatedWork W1992556963 @default.
- W3039026075 hasRelatedWork W2010225738 @default.
- W3039026075 hasRelatedWork W2259945320 @default.
- W3039026075 hasRelatedWork W2289524640 @default.
- W3039026075 hasRelatedWork W2376818140 @default.
- W3039026075 hasRelatedWork W2481196693 @default.
- W3039026075 hasRelatedWork W2528687592 @default.
- W3039026075 hasRelatedWork W2560069518 @default.
- W3039026075 hasRelatedWork W2752041961 @default.
- W3039026075 hasRelatedWork W2795269545 @default.
- W3039026075 hasRelatedWork W2914889202 @default.
- W3039026075 hasRelatedWork W2917639546 @default.