Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039076997> ?p ?o ?g. }
- W3039076997 endingPage "101057" @default.
- W3039076997 startingPage "101057" @default.
- W3039076997 abstract "Literature-based discovery process identifies the important but implicit relations among information embedded in published literature. Existing techniques from Information Retrieval (IR) and Natural Language Processing (NLP) attempt to identify the hidden or unpublished connections between information concepts within published literature, however, these techniques overlooked the concept of predicting the future and emerging relations among scientific knowledge components such as author selected keywords encapsulated within the literature. Keyword Co-occurrence Network (KCN), built upon author selected keywords, is considered as a knowledge graph that focuses both on these knowledge components and knowledge structure of a scientific domain by examining the relationships between knowledge entities. Using data from two multidisciplinary research domains other than the bio-medical domain, and capitalizing on bibliometrics, the dynamicity of temporal KCNs, and a recurrent neural network, this study develops some novel features supportive for the prediction of the future literature-based discoveries - the emerging connections (co-appearances in the same article) among keywords. Temporal importance extracted from both bipartite and unipartite networks, communities defined by genealogical relations, and the relative importance of temporal citation counts were used in the feature construction process. Both node and edge-level features were input into a recurrent neural network to forecast the feature values and predict the future relations between different scientific concepts/topics represented by the author selected keywords. High performance rates, compared both against contemporary heterogeneous network-based method and preferential attachment process, suggest that these features complement both the prediction of future literature-based discoveries and emerging trend analysis." @default.
- W3039076997 created "2020-07-10" @default.
- W3039076997 creator A5019939625 @default.
- W3039076997 creator A5030777395 @default.
- W3039076997 creator A5037244362 @default.
- W3039076997 date "2020-08-01" @default.
- W3039076997 modified "2023-09-30" @default.
- W3039076997 title "Mining Temporal Evolution of Knowledge Graphs and Genealogical Features for Literature-based Discovery Prediction" @default.
- W3039076997 cites W103340358 @default.
- W3039076997 cites W1970859146 @default.
- W3039076997 cites W1975563293 @default.
- W3039076997 cites W2006950151 @default.
- W3039076997 cites W2008620264 @default.
- W3039076997 cites W2011726136 @default.
- W3039076997 cites W2018156309 @default.
- W3039076997 cites W2020986551 @default.
- W3039076997 cites W2024030746 @default.
- W3039076997 cites W2026417691 @default.
- W3039076997 cites W2032841931 @default.
- W3039076997 cites W2037087310 @default.
- W3039076997 cites W2037407522 @default.
- W3039076997 cites W2052681001 @default.
- W3039076997 cites W2053403152 @default.
- W3039076997 cites W2068330569 @default.
- W3039076997 cites W2088856850 @default.
- W3039076997 cites W2089891294 @default.
- W3039076997 cites W2091019377 @default.
- W3039076997 cites W2099668895 @default.
- W3039076997 cites W2100822723 @default.
- W3039076997 cites W2104006813 @default.
- W3039076997 cites W2118229453 @default.
- W3039076997 cites W2126671570 @default.
- W3039076997 cites W2134665339 @default.
- W3039076997 cites W2152881983 @default.
- W3039076997 cites W2164259805 @default.
- W3039076997 cites W2337446942 @default.
- W3039076997 cites W2411035889 @default.
- W3039076997 cites W2411920841 @default.
- W3039076997 cites W2503940607 @default.
- W3039076997 cites W2532054931 @default.
- W3039076997 cites W2595801627 @default.
- W3039076997 cites W2615473284 @default.
- W3039076997 cites W2753199411 @default.
- W3039076997 cites W2768318902 @default.
- W3039076997 cites W2804186728 @default.
- W3039076997 cites W2892667257 @default.
- W3039076997 cites W2964299987 @default.
- W3039076997 cites W2967671762 @default.
- W3039076997 cites W3100281059 @default.
- W3039076997 cites W3122100588 @default.
- W3039076997 cites W4210958102 @default.
- W3039076997 cites W4237947392 @default.
- W3039076997 cites W4242615813 @default.
- W3039076997 doi "https://doi.org/10.1016/j.joi.2020.101057" @default.
- W3039076997 hasPublicationYear "2020" @default.
- W3039076997 type Work @default.
- W3039076997 sameAs 3039076997 @default.
- W3039076997 citedByCount "10" @default.
- W3039076997 countsByYear W30390769972021 @default.
- W3039076997 countsByYear W30390769972022 @default.
- W3039076997 countsByYear W30390769972023 @default.
- W3039076997 crossrefType "journal-article" @default.
- W3039076997 hasAuthorship W3039076997A5019939625 @default.
- W3039076997 hasAuthorship W3039076997A5030777395 @default.
- W3039076997 hasAuthorship W3039076997A5037244362 @default.
- W3039076997 hasConcept C111919701 @default.
- W3039076997 hasConcept C120567893 @default.
- W3039076997 hasConcept C124101348 @default.
- W3039076997 hasConcept C134306372 @default.
- W3039076997 hasConcept C136764020 @default.
- W3039076997 hasConcept C138885662 @default.
- W3039076997 hasConcept C154945302 @default.
- W3039076997 hasConcept C178315738 @default.
- W3039076997 hasConcept C207685749 @default.
- W3039076997 hasConcept C23123220 @default.
- W3039076997 hasConcept C2522767166 @default.
- W3039076997 hasConcept C2776401178 @default.
- W3039076997 hasConcept C2778805511 @default.
- W3039076997 hasConcept C33923547 @default.
- W3039076997 hasConcept C36503486 @default.
- W3039076997 hasConcept C41008148 @default.
- W3039076997 hasConcept C41895202 @default.
- W3039076997 hasConcept C98045186 @default.
- W3039076997 hasConceptScore W3039076997C111919701 @default.
- W3039076997 hasConceptScore W3039076997C120567893 @default.
- W3039076997 hasConceptScore W3039076997C124101348 @default.
- W3039076997 hasConceptScore W3039076997C134306372 @default.
- W3039076997 hasConceptScore W3039076997C136764020 @default.
- W3039076997 hasConceptScore W3039076997C138885662 @default.
- W3039076997 hasConceptScore W3039076997C154945302 @default.
- W3039076997 hasConceptScore W3039076997C178315738 @default.
- W3039076997 hasConceptScore W3039076997C207685749 @default.
- W3039076997 hasConceptScore W3039076997C23123220 @default.
- W3039076997 hasConceptScore W3039076997C2522767166 @default.
- W3039076997 hasConceptScore W3039076997C2776401178 @default.
- W3039076997 hasConceptScore W3039076997C2778805511 @default.
- W3039076997 hasConceptScore W3039076997C33923547 @default.
- W3039076997 hasConceptScore W3039076997C36503486 @default.