Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039080446> ?p ?o ?g. }
- W3039080446 endingPage "4612" @default.
- W3039080446 startingPage "4612" @default.
- W3039080446 abstract "As photoplethysmographic (PPG) signals are comprised of numerous pieces of important physiological information, they have been widely employed to measure many physiological parameters. However, only a high-quality PPG signal can provide a reliable physiological assessment. Unfortunately, PPG signals are easily corrupted by motion artifacts and baseline drift during recording. Although several rule-based algorithms have been developed for evaluating the quality of PPG signals, few artificial intelligence-based algorithms have been presented. Thus, this study aims to classify the quality of PPG signals by using two two-dimensional deep convolution neural networks (DCNN) when the PPG pulse is used to measure cardiac stroke volume (SV) by impedance cardiography. An image derived from a PPG pulse and its differential pulse is used as the input to the two DCNN models. To quantify the quality of individual PPG pulses, the error percentage of the beat-to-beat SV measured by our device and medis® CS 2000 synchronously is used to determine whether the pulse quality is high, middle, or low. Fourteen subjects were recruited, and a total of 3135 PPG pulses (1342 high quality, 73 middle quality, and 1720 low quality) were obtained. We used a traditional DCNN, VGG-19, and a residual DCNN, ResNet-50, to determine the quality levels of the PPG pulses. Their results were all better than the previous rule-based methods. The accuracies of VGG-19 and ResNet-50 were 0.895 and 0.925, respectively. Thus, the proposed DCNN may be applied for the classification of PPG quality and be helpful for improving the SV measurement in impedance cardiography." @default.
- W3039080446 created "2020-07-10" @default.
- W3039080446 creator A5074312540 @default.
- W3039080446 creator A5078450534 @default.
- W3039080446 creator A5084447476 @default.
- W3039080446 creator A5090057892 @default.
- W3039080446 creator A5090739497 @default.
- W3039080446 date "2020-07-03" @default.
- W3039080446 modified "2023-10-18" @default.
- W3039080446 title "Classification of Photoplethysmographic Signal Quality with Deep Convolution Neural Networks for Accurate Measurement of Cardiac Stroke Volume" @default.
- W3039080446 cites W2014223015 @default.
- W3039080446 cites W2014800492 @default.
- W3039080446 cites W2039457474 @default.
- W3039080446 cites W2042388577 @default.
- W3039080446 cites W2046012313 @default.
- W3039080446 cites W2083872334 @default.
- W3039080446 cites W2091375372 @default.
- W3039080446 cites W2104783267 @default.
- W3039080446 cites W2126228042 @default.
- W3039080446 cites W2140147284 @default.
- W3039080446 cites W2160347936 @default.
- W3039080446 cites W2194775991 @default.
- W3039080446 cites W2291961022 @default.
- W3039080446 cites W2343367305 @default.
- W3039080446 cites W2573003069 @default.
- W3039080446 cites W2620050178 @default.
- W3039080446 cites W2621205740 @default.
- W3039080446 cites W2794709367 @default.
- W3039080446 cites W2889838428 @default.
- W3039080446 cites W2890268853 @default.
- W3039080446 cites W2931807421 @default.
- W3039080446 cites W2943541732 @default.
- W3039080446 cites W2961638199 @default.
- W3039080446 cites W2980343828 @default.
- W3039080446 cites W2981788628 @default.
- W3039080446 cites W2990653535 @default.
- W3039080446 cites W3007787806 @default.
- W3039080446 doi "https://doi.org/10.3390/app10134612" @default.
- W3039080446 hasPublicationYear "2020" @default.
- W3039080446 type Work @default.
- W3039080446 sameAs 3039080446 @default.
- W3039080446 citedByCount "21" @default.
- W3039080446 countsByYear W30390804462019 @default.
- W3039080446 countsByYear W30390804462020 @default.
- W3039080446 countsByYear W30390804462021 @default.
- W3039080446 countsByYear W30390804462022 @default.
- W3039080446 countsByYear W30390804462023 @default.
- W3039080446 crossrefType "journal-article" @default.
- W3039080446 hasAuthorship W3039080446A5074312540 @default.
- W3039080446 hasAuthorship W3039080446A5078450534 @default.
- W3039080446 hasAuthorship W3039080446A5084447476 @default.
- W3039080446 hasAuthorship W3039080446A5090057892 @default.
- W3039080446 hasAuthorship W3039080446A5090739497 @default.
- W3039080446 hasBestOaLocation W30390804461 @default.
- W3039080446 hasConcept C106131492 @default.
- W3039080446 hasConcept C116390426 @default.
- W3039080446 hasConcept C136229726 @default.
- W3039080446 hasConcept C153180895 @default.
- W3039080446 hasConcept C154945302 @default.
- W3039080446 hasConcept C164705383 @default.
- W3039080446 hasConcept C199360897 @default.
- W3039080446 hasConcept C2775976690 @default.
- W3039080446 hasConcept C2778198053 @default.
- W3039080446 hasConcept C2779843651 @default.
- W3039080446 hasConcept C2780167933 @default.
- W3039080446 hasConcept C31972630 @default.
- W3039080446 hasConcept C41008148 @default.
- W3039080446 hasConcept C71924100 @default.
- W3039080446 hasConcept C76155785 @default.
- W3039080446 hasConcept C78085059 @default.
- W3039080446 hasConcept C80461066 @default.
- W3039080446 hasConcept C81363708 @default.
- W3039080446 hasConcept C94915269 @default.
- W3039080446 hasConceptScore W3039080446C106131492 @default.
- W3039080446 hasConceptScore W3039080446C116390426 @default.
- W3039080446 hasConceptScore W3039080446C136229726 @default.
- W3039080446 hasConceptScore W3039080446C153180895 @default.
- W3039080446 hasConceptScore W3039080446C154945302 @default.
- W3039080446 hasConceptScore W3039080446C164705383 @default.
- W3039080446 hasConceptScore W3039080446C199360897 @default.
- W3039080446 hasConceptScore W3039080446C2775976690 @default.
- W3039080446 hasConceptScore W3039080446C2778198053 @default.
- W3039080446 hasConceptScore W3039080446C2779843651 @default.
- W3039080446 hasConceptScore W3039080446C2780167933 @default.
- W3039080446 hasConceptScore W3039080446C31972630 @default.
- W3039080446 hasConceptScore W3039080446C41008148 @default.
- W3039080446 hasConceptScore W3039080446C71924100 @default.
- W3039080446 hasConceptScore W3039080446C76155785 @default.
- W3039080446 hasConceptScore W3039080446C78085059 @default.
- W3039080446 hasConceptScore W3039080446C80461066 @default.
- W3039080446 hasConceptScore W3039080446C81363708 @default.
- W3039080446 hasConceptScore W3039080446C94915269 @default.
- W3039080446 hasFunder F4320322795 @default.
- W3039080446 hasIssue "13" @default.
- W3039080446 hasLocation W30390804461 @default.
- W3039080446 hasOpenAccess W3039080446 @default.
- W3039080446 hasPrimaryLocation W30390804461 @default.
- W3039080446 hasRelatedWork W1969944617 @default.