Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039083873> ?p ?o ?g. }
- W3039083873 endingPage "1885" @default.
- W3039083873 startingPage "1885" @default.
- W3039083873 abstract "The proper management of a municipal water system is essential to sustain cities and support the water security of societies. Urban water estimating has always been a challenging task for managers of water utilities and policymakers. This paper applies a novel methodology that includes data pre-processing and an Artificial Neural Network (ANN) optimized with the Backtracking Search Algorithm (BSA-ANN) to estimate monthly water demand in relation to previous water consumption. Historical data of monthly water consumption in the Gauteng Province, South Africa, for the period 2007–2016, were selected for the creation and evaluation of the methodology. Data pre-processing techniques played a crucial role in the enhancing of the quality of the data before creating the prediction model. The BSA-ANN model yielded the best result with a root mean square error and a coefficient of efficiency of 0.0099 mega liters and 0.979, respectively. Moreover, it proved more efficient and reliable than the Crow Search Algorithm (CSA-ANN), based on the scale of error. Overall, this paper presents a new application for the hybrid model BSA-ANN that can be successfully used to predict water demand with high accuracy, in a city that heavily suffers from the impact of climate change and population growth." @default.
- W3039083873 created "2020-07-10" @default.
- W3039083873 creator A5009898434 @default.
- W3039083873 creator A5024275698 @default.
- W3039083873 creator A5028083196 @default.
- W3039083873 creator A5030041439 @default.
- W3039083873 creator A5033065301 @default.
- W3039083873 creator A5051240230 @default.
- W3039083873 creator A5070484516 @default.
- W3039083873 creator A5077858988 @default.
- W3039083873 date "2020-07-01" @default.
- W3039083873 modified "2023-10-01" @default.
- W3039083873 title "Urban Water Demand Prediction for a City That Suffers from Climate Change and Population Growth: Gauteng Province Case Study" @default.
- W3039083873 cites W1498436455 @default.
- W3039083873 cites W1974853958 @default.
- W3039083873 cites W1987092188 @default.
- W3039083873 cites W1996265651 @default.
- W3039083873 cites W2008868646 @default.
- W3039083873 cites W2065902166 @default.
- W3039083873 cites W2087070363 @default.
- W3039083873 cites W2098584872 @default.
- W3039083873 cites W2102017823 @default.
- W3039083873 cites W2112602938 @default.
- W3039083873 cites W2128084896 @default.
- W3039083873 cites W2149350210 @default.
- W3039083873 cites W2256578114 @default.
- W3039083873 cites W2261150424 @default.
- W3039083873 cites W2306115793 @default.
- W3039083873 cites W2333248310 @default.
- W3039083873 cites W2341049598 @default.
- W3039083873 cites W2413338433 @default.
- W3039083873 cites W2491773623 @default.
- W3039083873 cites W2565476208 @default.
- W3039083873 cites W2567091547 @default.
- W3039083873 cites W2581163311 @default.
- W3039083873 cites W2593310871 @default.
- W3039083873 cites W2593952792 @default.
- W3039083873 cites W2618160697 @default.
- W3039083873 cites W2622713141 @default.
- W3039083873 cites W2736041446 @default.
- W3039083873 cites W2737266637 @default.
- W3039083873 cites W2763772233 @default.
- W3039083873 cites W2766990064 @default.
- W3039083873 cites W2772417946 @default.
- W3039083873 cites W2783518340 @default.
- W3039083873 cites W2784111346 @default.
- W3039083873 cites W2785739381 @default.
- W3039083873 cites W2790415079 @default.
- W3039083873 cites W2791472415 @default.
- W3039083873 cites W2792319327 @default.
- W3039083873 cites W2795201804 @default.
- W3039083873 cites W2796138870 @default.
- W3039083873 cites W2808709491 @default.
- W3039083873 cites W2885615850 @default.
- W3039083873 cites W2893564989 @default.
- W3039083873 cites W2893630142 @default.
- W3039083873 cites W2898085442 @default.
- W3039083873 cites W2898125895 @default.
- W3039083873 cites W2898149408 @default.
- W3039083873 cites W2900304528 @default.
- W3039083873 cites W2903347319 @default.
- W3039083873 cites W2915347557 @default.
- W3039083873 cites W2924347204 @default.
- W3039083873 cites W2943751924 @default.
- W3039083873 cites W2945788305 @default.
- W3039083873 cites W2964519317 @default.
- W3039083873 cites W2965559850 @default.
- W3039083873 cites W2967810031 @default.
- W3039083873 cites W2967960876 @default.
- W3039083873 cites W2970739080 @default.
- W3039083873 cites W2974234787 @default.
- W3039083873 cites W2974296449 @default.
- W3039083873 cites W2982230493 @default.
- W3039083873 cites W2991284465 @default.
- W3039083873 cites W2996306069 @default.
- W3039083873 cites W3000563552 @default.
- W3039083873 cites W3003244122 @default.
- W3039083873 cites W3003728117 @default.
- W3039083873 cites W3034050286 @default.
- W3039083873 cites W4297709905 @default.
- W3039083873 doi "https://doi.org/10.3390/w12071885" @default.
- W3039083873 hasPublicationYear "2020" @default.
- W3039083873 type Work @default.
- W3039083873 sameAs 3039083873 @default.
- W3039083873 citedByCount "117" @default.
- W3039083873 countsByYear W30390838732020 @default.
- W3039083873 countsByYear W30390838732021 @default.
- W3039083873 countsByYear W30390838732022 @default.
- W3039083873 countsByYear W30390838732023 @default.
- W3039083873 crossrefType "journal-article" @default.
- W3039083873 hasAuthorship W3039083873A5009898434 @default.
- W3039083873 hasAuthorship W3039083873A5024275698 @default.
- W3039083873 hasAuthorship W3039083873A5028083196 @default.
- W3039083873 hasAuthorship W3039083873A5030041439 @default.
- W3039083873 hasAuthorship W3039083873A5033065301 @default.
- W3039083873 hasAuthorship W3039083873A5051240230 @default.
- W3039083873 hasAuthorship W3039083873A5070484516 @default.
- W3039083873 hasAuthorship W3039083873A5077858988 @default.