Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039103596> ?p ?o ?g. }
- W3039103596 endingPage "119775" @default.
- W3039103596 startingPage "119775" @default.
- W3039103596 abstract "Rock varnishes are μm-thin, dark, manganese(Mn)-rich crusts that accrete in the order of few μm/ka on weathering-resistant lithologies. Although these crusts can form in all climates, they are best known in arid to semi-arid settings. Aeolian dust is understood as a major contributor to the distinct trace metal and REE enrichments in rock varnish. However, the exact proportions of abiotic and biotic formation mechanisms that may explain the oxidation-reactions of Mn2+ to Mn4+, present as Mn oxyhydroxides in the varnish, are still a matter of ongoing debate. We present here the first systematic study of trace element enrichment processes between the uppermost layer of the varnish sequence and their adjacent <50 μm and >50 μm dust fractions across a selection of 41 major and trace elements. This approach is used to investigate samples from three fully arid deserts: the An Nafud in Saudi Arabia, the Negev in Israel, and the Mojave in the USA, which are compared to the significantly different environment of the semi-arid Knersvlakte in South Africa. A new in situ trace element analysis protocol was developed to perform femto- and nanosecond sector-field LA-ICP-MS microanalyses at high-spatial resolution, which allows us to measure the most recent varnish layers for their comparison with recent dust. In agreement with previous studies, all varnishes are enriched in Mn, Pb, Ce, Co, Ba, Zn, Ni, and the Rare-Earth Elements (REE). Here we demonstrate that fine (<50 μm) dust is characterized by similar trace element trends as the varnishes, at overall lower mass fractions. Dust >50 μm has low trace element mass fractions, and enrichment patterns plotting distinctly away from varnish and fine dust. Based on these geochemical patterns, our results indicate a general enrichment mechanism from fine dust to varnish. Previous studies suggested dust to play an integral role in providing the trace elements that are incorporated into the varnish by pH-Eh fluctuations in short-term rain and fog events. We amalgamate and refine previous growth models by providing direct evidence that leaching of about 10% of the Mn and other trace elements from clay minerals in rain or fog droplets at pH ~5 and subsequent scavenging on varnish surfaces at pH ~8 leads integrated over time to the distinct enrichment patterns of the varnish, while initial Mn oxyhydroxide formation is suggested to follow pathways of metal oxide mediated photo-catalysis. For the semi-arid occurrence in the Knersvlakte we present a distinct growth model as both environment, varnish, and dust composition differ significantly from the arid settings. Here, thick, metallic-looking varnish occurs mainly on the rim of quartz pebbles, lacks microlamination, and likely has upscaled growth processes. Among other aspects, we suggest a more complex interplay between photo-catalysis, nocturnal condensation events on quartz pebbles with subsequent water trapping at the rock-soil-atmosphere interface, due to a salic top-soil layer, to mainly account for these differences." @default.
- W3039103596 created "2020-07-10" @default.
- W3039103596 creator A5011530850 @default.
- W3039103596 creator A5019537949 @default.
- W3039103596 creator A5024382360 @default.
- W3039103596 creator A5029739578 @default.
- W3039103596 creator A5036563516 @default.
- W3039103596 creator A5037998976 @default.
- W3039103596 creator A5038958865 @default.
- W3039103596 creator A5049547399 @default.
- W3039103596 creator A5056683578 @default.
- W3039103596 creator A5082416286 @default.
- W3039103596 date "2020-09-01" @default.
- W3039103596 modified "2023-10-15" @default.
- W3039103596 title "Geochemical insights into the relationship of rock varnish and adjacent mineral dust fractions" @default.
- W3039103596 cites W1937586463 @default.
- W3039103596 cites W1968949026 @default.
- W3039103596 cites W1970669805 @default.
- W3039103596 cites W1976379176 @default.
- W3039103596 cites W1985274795 @default.
- W3039103596 cites W1986052302 @default.
- W3039103596 cites W1987427182 @default.
- W3039103596 cites W1987734384 @default.
- W3039103596 cites W1990696894 @default.
- W3039103596 cites W1991471609 @default.
- W3039103596 cites W1995755447 @default.
- W3039103596 cites W1997772382 @default.
- W3039103596 cites W2001602875 @default.
- W3039103596 cites W2013453004 @default.
- W3039103596 cites W2016751313 @default.
- W3039103596 cites W2018118326 @default.
- W3039103596 cites W2019380312 @default.
- W3039103596 cites W2020726504 @default.
- W3039103596 cites W2021162607 @default.
- W3039103596 cites W2026534689 @default.
- W3039103596 cites W2026979800 @default.
- W3039103596 cites W2032247773 @default.
- W3039103596 cites W2038459567 @default.
- W3039103596 cites W2038589121 @default.
- W3039103596 cites W2038853259 @default.
- W3039103596 cites W2046761316 @default.
- W3039103596 cites W2048418155 @default.
- W3039103596 cites W2051921900 @default.
- W3039103596 cites W2054994798 @default.
- W3039103596 cites W2055070367 @default.
- W3039103596 cites W2055327617 @default.
- W3039103596 cites W2056380135 @default.
- W3039103596 cites W2056971695 @default.
- W3039103596 cites W2058306764 @default.
- W3039103596 cites W2064444014 @default.
- W3039103596 cites W2073222579 @default.
- W3039103596 cites W2076852250 @default.
- W3039103596 cites W2078965367 @default.
- W3039103596 cites W2081735009 @default.
- W3039103596 cites W2082725664 @default.
- W3039103596 cites W2082823380 @default.
- W3039103596 cites W2085739620 @default.
- W3039103596 cites W2087937118 @default.
- W3039103596 cites W2089410452 @default.
- W3039103596 cites W2095411832 @default.
- W3039103596 cites W2097045610 @default.
- W3039103596 cites W2100072849 @default.
- W3039103596 cites W2102640922 @default.
- W3039103596 cites W2108211322 @default.
- W3039103596 cites W2123762201 @default.
- W3039103596 cites W2133042542 @default.
- W3039103596 cites W2135445963 @default.
- W3039103596 cites W2139033840 @default.
- W3039103596 cites W2140508051 @default.
- W3039103596 cites W2141125144 @default.
- W3039103596 cites W2141917183 @default.
- W3039103596 cites W2287549710 @default.
- W3039103596 cites W2315536481 @default.
- W3039103596 cites W2594477291 @default.
- W3039103596 cites W2605506400 @default.
- W3039103596 cites W2620991626 @default.
- W3039103596 cites W2761252409 @default.
- W3039103596 cites W2793400010 @default.
- W3039103596 cites W2945570555 @default.
- W3039103596 cites W2946704488 @default.
- W3039103596 cites W3047255755 @default.
- W3039103596 cites W4211115059 @default.
- W3039103596 cites W1981078926 @default.
- W3039103596 doi "https://doi.org/10.1016/j.chemgeo.2020.119775" @default.
- W3039103596 hasPublicationYear "2020" @default.
- W3039103596 type Work @default.
- W3039103596 sameAs 3039103596 @default.
- W3039103596 citedByCount "10" @default.
- W3039103596 countsByYear W30391035962020 @default.
- W3039103596 countsByYear W30391035962021 @default.
- W3039103596 countsByYear W30391035962022 @default.
- W3039103596 countsByYear W30391035962023 @default.
- W3039103596 crossrefType "journal-article" @default.
- W3039103596 hasAuthorship W3039103596A5011530850 @default.
- W3039103596 hasAuthorship W3039103596A5019537949 @default.
- W3039103596 hasAuthorship W3039103596A5024382360 @default.
- W3039103596 hasAuthorship W3039103596A5029739578 @default.
- W3039103596 hasAuthorship W3039103596A5036563516 @default.