Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039339675> ?p ?o ?g. }
- W3039339675 endingPage "3530" @default.
- W3039339675 startingPage "3514" @default.
- W3039339675 abstract "Abstract In recent years, China has promoted many new energy projects in order to meet the growing demand for electricity. Therefore, China's offshore wind power installed capacity has grown rapidly. China has a long coastline and abundant offshore wind energy resources. Offshore wind power is an important area for the development of renewable energy, which can promote wind power technology advancement and energy structure adjustment. Therefore, conducting effective research and forecast on the cumulative installed capacity of China's offshore wind power will help the government to rationally deploy and reduce the risk of investment in offshore wind power. In order to accurately predict the future prospects of offshore wind power in China, this paper firstly constructed a set of influencing factors and used gray correlation analysis to screen the main influencing factors. Then, this paper proposed a novel forecasting model named e‐VMD‐PCA‐RELM. The algorithm is based on the traditional RELM (robust extreme learning machine) algorithm, which effectively processes the noise information through the PCA (principal component analysis) algorithm, and extracted the feature elements of the RELM hidden layer to reduce the information redundancy. At the same time, the e‐VMD (variational mode decomposition optimized by entropy) algorithm is used to decompose the original time series to obtain multiple components. By comparing with the other forecasting algorithms, it is proved that the proposed forecasting model has strong generalization ability and has achieved good prediction result. Finally, the e‐VMD‐PCA‐RELM model is used to predict the scale of offshore wind farms in China from 2019 to 2035. We find that the cumulative installed capacity of China's offshore wind power will exceed 60 GW in 2035, and the installed capacity will increase year by year. In 2030, there will be a large increase, with a relative growth rate of 20%." @default.
- W3039339675 created "2020-07-10" @default.
- W3039339675 creator A5007777576 @default.
- W3039339675 creator A5027804623 @default.
- W3039339675 creator A5047186891 @default.
- W3039339675 creator A5070471951 @default.
- W3039339675 creator A5082020327 @default.
- W3039339675 creator A5082137478 @default.
- W3039339675 creator A5090092803 @default.
- W3039339675 date "2020-07-06" @default.
- W3039339675 modified "2023-09-26" @default.
- W3039339675 title "Future prospects research on offshore wind power scale in China based on signal decomposition and extreme learning machine optimized by principal component analysis" @default.
- W3039339675 cites W1996009578 @default.
- W3039339675 cites W2015659461 @default.
- W3039339675 cites W2016750307 @default.
- W3039339675 cites W2030495428 @default.
- W3039339675 cites W2054659065 @default.
- W3039339675 cites W2054916309 @default.
- W3039339675 cites W2292480697 @default.
- W3039339675 cites W2360483976 @default.
- W3039339675 cites W2466993395 @default.
- W3039339675 cites W2532529216 @default.
- W3039339675 cites W2613082526 @default.
- W3039339675 cites W2791893017 @default.
- W3039339675 cites W2794359287 @default.
- W3039339675 cites W2801998166 @default.
- W3039339675 cites W2883967569 @default.
- W3039339675 cites W2885354784 @default.
- W3039339675 cites W2890253674 @default.
- W3039339675 cites W2890886120 @default.
- W3039339675 cites W2897658618 @default.
- W3039339675 cites W2899132448 @default.
- W3039339675 cites W2902087482 @default.
- W3039339675 cites W2902661749 @default.
- W3039339675 cites W2908869444 @default.
- W3039339675 cites W2909687204 @default.
- W3039339675 cites W2911544255 @default.
- W3039339675 cites W2914546501 @default.
- W3039339675 cites W2915742901 @default.
- W3039339675 cites W2915861306 @default.
- W3039339675 cites W2919972822 @default.
- W3039339675 cites W2922089800 @default.
- W3039339675 cites W2925974354 @default.
- W3039339675 cites W2927586405 @default.
- W3039339675 cites W2943972301 @default.
- W3039339675 cites W2944241992 @default.
- W3039339675 cites W2944568626 @default.
- W3039339675 cites W2945750420 @default.
- W3039339675 cites W2947747057 @default.
- W3039339675 cites W422671020 @default.
- W3039339675 doi "https://doi.org/10.1002/ese3.761" @default.
- W3039339675 hasPublicationYear "2020" @default.
- W3039339675 type Work @default.
- W3039339675 sameAs 3039339675 @default.
- W3039339675 citedByCount "6" @default.
- W3039339675 countsByYear W30393396752021 @default.
- W3039339675 countsByYear W30393396752022 @default.
- W3039339675 crossrefType "journal-article" @default.
- W3039339675 hasAuthorship W3039339675A5007777576 @default.
- W3039339675 hasAuthorship W3039339675A5027804623 @default.
- W3039339675 hasAuthorship W3039339675A5047186891 @default.
- W3039339675 hasAuthorship W3039339675A5070471951 @default.
- W3039339675 hasAuthorship W3039339675A5082020327 @default.
- W3039339675 hasAuthorship W3039339675A5082137478 @default.
- W3039339675 hasAuthorship W3039339675A5090092803 @default.
- W3039339675 hasBestOaLocation W30393396751 @default.
- W3039339675 hasConcept C119599485 @default.
- W3039339675 hasConcept C121332964 @default.
- W3039339675 hasConcept C127413603 @default.
- W3039339675 hasConcept C154945302 @default.
- W3039339675 hasConcept C163258240 @default.
- W3039339675 hasConcept C188573790 @default.
- W3039339675 hasConcept C200601418 @default.
- W3039339675 hasConcept C27438332 @default.
- W3039339675 hasConcept C2780150128 @default.
- W3039339675 hasConcept C2781084341 @default.
- W3039339675 hasConcept C41008148 @default.
- W3039339675 hasConcept C423512 @default.
- W3039339675 hasConcept C50644808 @default.
- W3039339675 hasConcept C62520636 @default.
- W3039339675 hasConcept C71554815 @default.
- W3039339675 hasConcept C78600449 @default.
- W3039339675 hasConcept C8735168 @default.
- W3039339675 hasConcept C89227174 @default.
- W3039339675 hasConceptScore W3039339675C119599485 @default.
- W3039339675 hasConceptScore W3039339675C121332964 @default.
- W3039339675 hasConceptScore W3039339675C127413603 @default.
- W3039339675 hasConceptScore W3039339675C154945302 @default.
- W3039339675 hasConceptScore W3039339675C163258240 @default.
- W3039339675 hasConceptScore W3039339675C188573790 @default.
- W3039339675 hasConceptScore W3039339675C200601418 @default.
- W3039339675 hasConceptScore W3039339675C27438332 @default.
- W3039339675 hasConceptScore W3039339675C2780150128 @default.
- W3039339675 hasConceptScore W3039339675C2781084341 @default.
- W3039339675 hasConceptScore W3039339675C41008148 @default.
- W3039339675 hasConceptScore W3039339675C423512 @default.
- W3039339675 hasConceptScore W3039339675C50644808 @default.
- W3039339675 hasConceptScore W3039339675C62520636 @default.