Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039356875> ?p ?o ?g. }
- W3039356875 endingPage "107333" @default.
- W3039356875 startingPage "107333" @default.
- W3039356875 abstract "Empirical-statistical models of debris-flow are challenging to implement in environments where sedimentary and hydrologic triggering processes change through time, such as after a large earthquake. The flexible and adaptive statistical methods provided by machine learning algorithms may improve the quality of debris flow predictions where triggering conditions and the nature of sediment that can bulk flows varies with time. We developed a hybrid machine-learning model of future debris-flow volumes using a dataset of measured debris-flow volumes from 60 catchments that generated post-Wenchuan Earthquake (Mw 7.9) debris flows. We input topographic variables (catchment area, topographic relief, channel length, distance from seismic fault, and average channel gradient) and the total volume of co-seismic landslide debris into the PSO-ELM_AdaBoost machine-learning model, created by combining Extreme learning machine (ELM), particle swarm optimization (PSO) and adaptive boosting machine learning algorithm (AdaBoost). The model was trained and tested using post-2008 Mw 7.9 Wenchuan Earthquake debris flows, then applied to understand potential volumes of post-earthquake debris flows associated with other regional earthquakes (2013 Mw 6.6 Lushan Earthquake, 2010 Mw 6.9 Yushu Earthquake). We compared the PSO-ELM_Adaboost method with different machine learning methods, including back-propagation neural network (BPNN), support vector machine (SVM), ELM, PSO-ELM. The Comparative analysis demonstrated that the PSO-ELM_Adaboost method has a higher statistical validity and prediction accuracy with a mean absolute percentage error (MAPE) less than 0.10. The prediction accuracy of debris-flow volumes trigged by other earthquakes decreases to 0.11–0.16 (absolute percentage error), suggesting that once calibrated for a region this method can be applied to other regional earthquakes. This model may be useful for engineering design to mitigate the risk of large post-earthquake debris flows." @default.
- W3039356875 created "2020-07-10" @default.
- W3039356875 creator A5002892141 @default.
- W3039356875 creator A5003164459 @default.
- W3039356875 creator A5044410512 @default.
- W3039356875 creator A5047620654 @default.
- W3039356875 creator A5049768691 @default.
- W3039356875 creator A5056345110 @default.
- W3039356875 date "2020-10-01" @default.
- W3039356875 modified "2023-10-13" @default.
- W3039356875 title "A hybrid machine-learning model to estimate potential debris-flow volumes" @default.
- W3039356875 cites W1606571603 @default.
- W3039356875 cites W1965895201 @default.
- W3039356875 cites W1974882614 @default.
- W3039356875 cites W1982623886 @default.
- W3039356875 cites W1983676031 @default.
- W3039356875 cites W1990138297 @default.
- W3039356875 cites W1992860865 @default.
- W3039356875 cites W2008487960 @default.
- W3039356875 cites W2011666252 @default.
- W3039356875 cites W2012118327 @default.
- W3039356875 cites W2019499646 @default.
- W3039356875 cites W2037852497 @default.
- W3039356875 cites W2038616949 @default.
- W3039356875 cites W2042678916 @default.
- W3039356875 cites W2043356828 @default.
- W3039356875 cites W2049601606 @default.
- W3039356875 cites W2052912973 @default.
- W3039356875 cites W2063559185 @default.
- W3039356875 cites W2064230203 @default.
- W3039356875 cites W2067563491 @default.
- W3039356875 cites W2068972721 @default.
- W3039356875 cites W2077116169 @default.
- W3039356875 cites W2082593161 @default.
- W3039356875 cites W2091395840 @default.
- W3039356875 cites W2093486058 @default.
- W3039356875 cites W2097033979 @default.
- W3039356875 cites W2099632121 @default.
- W3039356875 cites W2126765760 @default.
- W3039356875 cites W2130378394 @default.
- W3039356875 cites W2155089900 @default.
- W3039356875 cites W2165700458 @default.
- W3039356875 cites W2265571603 @default.
- W3039356875 cites W2284304237 @default.
- W3039356875 cites W2322078666 @default.
- W3039356875 cites W2478414316 @default.
- W3039356875 cites W2481759171 @default.
- W3039356875 cites W2606728238 @default.
- W3039356875 cites W2672696483 @default.
- W3039356875 cites W2781988471 @default.
- W3039356875 cites W2783128662 @default.
- W3039356875 cites W2793473697 @default.
- W3039356875 cites W2800735627 @default.
- W3039356875 cites W2802220384 @default.
- W3039356875 cites W2805826728 @default.
- W3039356875 cites W2885746866 @default.
- W3039356875 cites W2890524193 @default.
- W3039356875 cites W2891781873 @default.
- W3039356875 cites W2900013348 @default.
- W3039356875 cites W2910136360 @default.
- W3039356875 cites W2910183581 @default.
- W3039356875 cites W2943844914 @default.
- W3039356875 cites W2944555151 @default.
- W3039356875 cites W2950811860 @default.
- W3039356875 cites W299701049 @default.
- W3039356875 cites W4243897215 @default.
- W3039356875 cites W4361868517 @default.
- W3039356875 cites W585358051 @default.
- W3039356875 doi "https://doi.org/10.1016/j.geomorph.2020.107333" @default.
- W3039356875 hasPublicationYear "2020" @default.
- W3039356875 type Work @default.
- W3039356875 sameAs 3039356875 @default.
- W3039356875 citedByCount "11" @default.
- W3039356875 countsByYear W30393568752021 @default.
- W3039356875 countsByYear W30393568752022 @default.
- W3039356875 countsByYear W30393568752023 @default.
- W3039356875 crossrefType "journal-article" @default.
- W3039356875 hasAuthorship W3039356875A5002892141 @default.
- W3039356875 hasAuthorship W3039356875A5003164459 @default.
- W3039356875 hasAuthorship W3039356875A5044410512 @default.
- W3039356875 hasAuthorship W3039356875A5047620654 @default.
- W3039356875 hasAuthorship W3039356875A5049768691 @default.
- W3039356875 hasAuthorship W3039356875A5056345110 @default.
- W3039356875 hasBestOaLocation W30393568752 @default.
- W3039356875 hasConcept C111368507 @default.
- W3039356875 hasConcept C119857082 @default.
- W3039356875 hasConcept C12267149 @default.
- W3039356875 hasConcept C127313418 @default.
- W3039356875 hasConcept C141404830 @default.
- W3039356875 hasConcept C154945302 @default.
- W3039356875 hasConcept C2776023875 @default.
- W3039356875 hasConcept C2776643431 @default.
- W3039356875 hasConcept C2780150128 @default.
- W3039356875 hasConcept C41008148 @default.
- W3039356875 hasConcept C50644808 @default.
- W3039356875 hasConcept C85617194 @default.
- W3039356875 hasConceptScore W3039356875C111368507 @default.
- W3039356875 hasConceptScore W3039356875C119857082 @default.