Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039363151> ?p ?o ?g. }
- W3039363151 endingPage "2123" @default.
- W3039363151 startingPage "2123" @default.
- W3039363151 abstract "This paper proposes a combined approach comprising a set of methods for the high-precision mapping of soil moisture in a study area located in Jiangsu Province of China, based on the Chinese C-band synthetic aperture radar data of GF-3 and high spatial-resolution optical data of GF-1, in situ experimental datasets and background knowledge. The study was conducted in three stages: First, in the process of eliminating the effect of vegetation canopy, an empirical vegetation water content model and a water cloud model with localized parameters were developed to obtain the bare soil backscattering coefficient. Second, four commonly used models (advanced integral equation model (AIEM), look-up table (LUT) method, Oh model, and the Dubois model) were coupled to acquire nine soil moisture retrieval maps and algorithms. Finally, a simple and effective optimal solution method was proposed to select and combine the nine algorithms based on classification strategies devised using three types of background knowledge. A comprehensive evaluation was carried out on each soil moisture map in terms of the root-mean-square-error (RMSE), Pearson correlation coefficient (PCC), mean absolute error (MAE), and mean bias (bias). The results show that for the nine individual algorithms, the estimated model constructed using the AIEM (mv1) was significantly more accurate than those constructed using the other models (RMSE = 0.0321 cm³/cm³, MAE = 0.0260 cm³/cm³, and PCC = 0.9115), followed by the Oh model (m_v5) and LUT inversion method under HH polarization (mv2). Compared with the independent algorithms, the optimal solution methods have significant advantages; the soil moisture map obtained using the classification strategy based on the percentage content of clay was the most satisfactory (RMSE = 0.0271 cm³/cm³, MAE = 0.0225 cm³/cm³, and PCC = 0.9364). This combined method could not only effectively integrate the optical and radar satellite data but also couple a variety of commonly used inversion models, and at the same time, background knowledge was introduced into the optimal solution method. Thus, we provide a new method for the high-precision mapping of soil moisture in areas with a complex underlying surface." @default.
- W3039363151 created "2020-07-10" @default.
- W3039363151 creator A5014357267 @default.
- W3039363151 creator A5060015697 @default.
- W3039363151 creator A5070152475 @default.
- W3039363151 creator A5073354507 @default.
- W3039363151 creator A5075861619 @default.
- W3039363151 date "2020-07-02" @default.
- W3039363151 modified "2023-10-13" @default.
- W3039363151 title "High-Precision Soil Moisture Mapping Based on Multi-Model Coupling and Background Knowledge, Over Vegetated Areas Using Chinese GF-3 and GF-1 Satellite Data" @default.
- W3039363151 cites W1662286684 @default.
- W3039363151 cites W1838868886 @default.
- W3039363151 cites W1968389545 @default.
- W3039363151 cites W1968668882 @default.
- W3039363151 cites W1975262310 @default.
- W3039363151 cites W1975768883 @default.
- W3039363151 cites W1991099778 @default.
- W3039363151 cites W1997512381 @default.
- W3039363151 cites W2000425421 @default.
- W3039363151 cites W2001510610 @default.
- W3039363151 cites W2002687396 @default.
- W3039363151 cites W2003157639 @default.
- W3039363151 cites W2003845892 @default.
- W3039363151 cites W2008581100 @default.
- W3039363151 cites W2008780751 @default.
- W3039363151 cites W2010979668 @default.
- W3039363151 cites W2014917534 @default.
- W3039363151 cites W2024303206 @default.
- W3039363151 cites W2028979033 @default.
- W3039363151 cites W2033159142 @default.
- W3039363151 cites W2040052480 @default.
- W3039363151 cites W2044927495 @default.
- W3039363151 cites W2046288206 @default.
- W3039363151 cites W2046429644 @default.
- W3039363151 cites W2061227954 @default.
- W3039363151 cites W2061265839 @default.
- W3039363151 cites W2082317410 @default.
- W3039363151 cites W2083256605 @default.
- W3039363151 cites W2084939317 @default.
- W3039363151 cites W2084952127 @default.
- W3039363151 cites W2086470215 @default.
- W3039363151 cites W2092055157 @default.
- W3039363151 cites W2093608156 @default.
- W3039363151 cites W2109898366 @default.
- W3039363151 cites W2114569030 @default.
- W3039363151 cites W2121857067 @default.
- W3039363151 cites W2141348340 @default.
- W3039363151 cites W2145846654 @default.
- W3039363151 cites W2146177950 @default.
- W3039363151 cites W2148529957 @default.
- W3039363151 cites W2169517707 @default.
- W3039363151 cites W2179198952 @default.
- W3039363151 cites W2228578885 @default.
- W3039363151 cites W2234023134 @default.
- W3039363151 cites W2258153553 @default.
- W3039363151 cites W2289960905 @default.
- W3039363151 cites W2292681250 @default.
- W3039363151 cites W2295766255 @default.
- W3039363151 cites W2509917403 @default.
- W3039363151 cites W2519990260 @default.
- W3039363151 cites W2582102597 @default.
- W3039363151 cites W2583812354 @default.
- W3039363151 cites W2592541999 @default.
- W3039363151 cites W2674441608 @default.
- W3039363151 cites W2747196278 @default.
- W3039363151 cites W2767457176 @default.
- W3039363151 cites W2799869868 @default.
- W3039363151 cites W2806779590 @default.
- W3039363151 cites W2887502309 @default.
- W3039363151 cites W2890083187 @default.
- W3039363151 cites W2895125548 @default.
- W3039363151 cites W2896477677 @default.
- W3039363151 cites W2911446993 @default.
- W3039363151 cites W2911470906 @default.
- W3039363151 cites W2912380233 @default.
- W3039363151 cites W3026296688 @default.
- W3039363151 cites W3026647340 @default.
- W3039363151 cites W3034653698 @default.
- W3039363151 doi "https://doi.org/10.3390/rs12132123" @default.
- W3039363151 hasPublicationYear "2020" @default.
- W3039363151 type Work @default.
- W3039363151 sameAs 3039363151 @default.
- W3039363151 citedByCount "10" @default.
- W3039363151 countsByYear W30393631512020 @default.
- W3039363151 countsByYear W30393631512021 @default.
- W3039363151 countsByYear W30393631512022 @default.
- W3039363151 countsByYear W30393631512023 @default.
- W3039363151 crossrefType "journal-article" @default.
- W3039363151 hasAuthorship W3039363151A5014357267 @default.
- W3039363151 hasAuthorship W3039363151A5060015697 @default.
- W3039363151 hasAuthorship W3039363151A5070152475 @default.
- W3039363151 hasAuthorship W3039363151A5073354507 @default.
- W3039363151 hasAuthorship W3039363151A5075861619 @default.
- W3039363151 hasBestOaLocation W30393631511 @default.
- W3039363151 hasConcept C105795698 @default.
- W3039363151 hasConcept C11413529 @default.
- W3039363151 hasConcept C127313418 @default.
- W3039363151 hasConcept C127413603 @default.