Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039366874> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3039366874 abstract "Bayesian methods have proved powerful in many applications for the inference of model parameters from data. These methods are based on Bayes' theorem, which itself is deceptively simple. However, in practice the computations required are intractable even for simple cases. Hence methods for Bayesian inference have historically either been significantly approximate, e.g., the Laplace approximation, or achieve samples from the exact solution at significant computational expense, e.g., Markov Chain Monte Carlo methods. Since around the year 2000 so-called Variational approaches to Bayesian inference have been increasingly deployed. In its most general form Variational Bayes (VB) involves approximating the true posterior probability distribution via another more 'manageable' distribution, the aim being to achieve as good an approximation as possible. In the original FMRIB Variational Bayes tutorial we documented an approach to VB based that took a 'mean field' approach to forming the approximate posterior, required the conjugacy of prior and likelihood, and exploited the Calculus of Variations, to derive an iterative series of update equations, akin to Expectation Maximisation. In this tutorial we revisit VB, but now take a stochastic approach to the problem that potentially circumvents some of the limitations imposed by the earlier methodology. This new approach bears a lot of similarity to, and has benefited from, computational methods applied to machine learning algorithms. Although, what we document here is still recognisably Bayesian inference in the classic sense, and not an attempt to use machine learning as a black-box to solve the inference problem." @default.
- W3039366874 created "2020-07-10" @default.
- W3039366874 creator A5001596439 @default.
- W3039366874 creator A5088377480 @default.
- W3039366874 date "2020-07-03" @default.
- W3039366874 modified "2023-09-27" @default.
- W3039366874 title "The FMRIB Variational Bayesian Inference Tutorial II: Stochastic Variational Bayes" @default.
- W3039366874 cites W1959608418 @default.
- W3039366874 cites W2172085063 @default.
- W3039366874 cites W2899022785 @default.
- W3039366874 cites W2963936947 @default.
- W3039366874 hasPublicationYear "2020" @default.
- W3039366874 type Work @default.
- W3039366874 sameAs 3039366874 @default.
- W3039366874 citedByCount "0" @default.
- W3039366874 crossrefType "posted-content" @default.
- W3039366874 hasAuthorship W3039366874A5001596439 @default.
- W3039366874 hasAuthorship W3039366874A5088377480 @default.
- W3039366874 hasConcept C101112237 @default.
- W3039366874 hasConcept C107673813 @default.
- W3039366874 hasConcept C111350023 @default.
- W3039366874 hasConcept C11413529 @default.
- W3039366874 hasConcept C119857082 @default.
- W3039366874 hasConcept C154945302 @default.
- W3039366874 hasConcept C160234255 @default.
- W3039366874 hasConcept C207201462 @default.
- W3039366874 hasConcept C22243797 @default.
- W3039366874 hasConcept C2776214188 @default.
- W3039366874 hasConcept C28826006 @default.
- W3039366874 hasConcept C33923547 @default.
- W3039366874 hasConcept C41008148 @default.
- W3039366874 hasConcept C57830394 @default.
- W3039366874 hasConceptScore W3039366874C101112237 @default.
- W3039366874 hasConceptScore W3039366874C107673813 @default.
- W3039366874 hasConceptScore W3039366874C111350023 @default.
- W3039366874 hasConceptScore W3039366874C11413529 @default.
- W3039366874 hasConceptScore W3039366874C119857082 @default.
- W3039366874 hasConceptScore W3039366874C154945302 @default.
- W3039366874 hasConceptScore W3039366874C160234255 @default.
- W3039366874 hasConceptScore W3039366874C207201462 @default.
- W3039366874 hasConceptScore W3039366874C22243797 @default.
- W3039366874 hasConceptScore W3039366874C2776214188 @default.
- W3039366874 hasConceptScore W3039366874C28826006 @default.
- W3039366874 hasConceptScore W3039366874C33923547 @default.
- W3039366874 hasConceptScore W3039366874C41008148 @default.
- W3039366874 hasConceptScore W3039366874C57830394 @default.
- W3039366874 hasLocation W30393668741 @default.
- W3039366874 hasOpenAccess W3039366874 @default.
- W3039366874 hasPrimaryLocation W30393668741 @default.
- W3039366874 hasRelatedWork W2107455764 @default.
- W3039366874 hasRelatedWork W2115979064 @default.
- W3039366874 hasRelatedWork W2120609536 @default.
- W3039366874 hasRelatedWork W2126819395 @default.
- W3039366874 hasRelatedWork W2224136389 @default.
- W3039366874 hasRelatedWork W2401264397 @default.
- W3039366874 hasRelatedWork W2577250807 @default.
- W3039366874 hasRelatedWork W2743798057 @default.
- W3039366874 hasRelatedWork W2767734436 @default.
- W3039366874 hasRelatedWork W2769989147 @default.
- W3039366874 hasRelatedWork W2810320904 @default.
- W3039366874 hasRelatedWork W2885748353 @default.
- W3039366874 hasRelatedWork W2891063340 @default.
- W3039366874 hasRelatedWork W2962837602 @default.
- W3039366874 hasRelatedWork W3004038968 @default.
- W3039366874 hasRelatedWork W3015085982 @default.
- W3039366874 hasRelatedWork W3133733630 @default.
- W3039366874 hasRelatedWork W3163718425 @default.
- W3039366874 hasRelatedWork W3210999712 @default.
- W3039366874 hasRelatedWork W56808026 @default.
- W3039366874 isParatext "false" @default.
- W3039366874 isRetracted "false" @default.
- W3039366874 magId "3039366874" @default.
- W3039366874 workType "article" @default.