Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039366958> ?p ?o ?g. }
- W3039366958 endingPage "6642" @default.
- W3039366958 startingPage "6621" @default.
- W3039366958 abstract "Hybrid beamforming (BF), which divides BF operation into radio frequency (RF) and baseband (BB) domains, will play a critical role in MIMO communication at millimeter-wave (mmW) frequencies. In principle, we can obtain unconstrained (optimum) beamformers of a transceiver, which approach the maximum achievable data rates, through its singular value decomposition (SVD). Due to the use of finite-precision phase shifters, combined with power constraints, additional challenges are imposed on the problem of designing hybrid beamformers. Motivated by the recent success of machine learning (ML) techniques, particularly in areas such as computer vision and speech recognition, we explore if ML techniques can be effectively used for SVD and hybrid BF. To this end, we first present a data-driven approach to compute the SVD. We propose three deep neural network (DNN) architectures to approximate the SVD, with varying levels of complexity. The methodology for training these DNN architectures is inspired by the fundamental property of SVD, i.e., it can be used to obtain low-rank approximations. We next explicitly take the constraints of hybrid BF into account (such as quantized phase shifters, power constraints), and propose a novel DNN based approach for the design of hybrid BF systems. To validate the DNN based approach, we present simulation results for both approximating the SVD as well as for hybrid BF. Our results show that DNNs can be an attractive and efficient solution for estimating SVD in a data-driven manner. For the simulations of hybrid BF, we first consider the geometric channel model. We show that the DNN based hybrid BF improves rates by up to 50 - 70% compared to conventional hybrid BF algorithms and achieves 10 - 30% gain in rates compared with the state-of-art ML-aided hybrid BF algorithms. We also discuss the impact of the choice of hyperparameters, such as the number of hidden layers, mini-batch size, and training iterations on the accuracy of DNNs. Furthermore, we provide time complexity and memory requirement analyses for the proposed approach and state-of-the-art approaches." @default.
- W3039366958 created "2020-07-10" @default.
- W3039366958 creator A5004316408 @default.
- W3039366958 creator A5012749654 @default.
- W3039366958 creator A5028885778 @default.
- W3039366958 creator A5045154295 @default.
- W3039366958 date "2020-10-01" @default.
- W3039366958 modified "2023-10-14" @default.
- W3039366958 title "Deep Learning for SVD and Hybrid Beamforming" @default.
- W3039366958 cites W1932847118 @default.
- W3039366958 cites W1964477602 @default.
- W3039366958 cites W1991056455 @default.
- W3039366958 cites W1998736653 @default.
- W3039366958 cites W2004294022 @default.
- W3039366958 cites W2034651337 @default.
- W3039366958 cites W2053521124 @default.
- W3039366958 cites W2078626246 @default.
- W3039366958 cites W2078841894 @default.
- W3039366958 cites W2085098436 @default.
- W3039366958 cites W2091012876 @default.
- W3039366958 cites W2097117768 @default.
- W3039366958 cites W2099018497 @default.
- W3039366958 cites W2103972037 @default.
- W3039366958 cites W2111953900 @default.
- W3039366958 cites W2116193517 @default.
- W3039366958 cites W2116334496 @default.
- W3039366958 cites W2127920014 @default.
- W3039366958 cites W2143612262 @default.
- W3039366958 cites W2147329751 @default.
- W3039366958 cites W2163363194 @default.
- W3039366958 cites W2165327110 @default.
- W3039366958 cites W2176412452 @default.
- W3039366958 cites W2242818861 @default.
- W3039366958 cites W2273675851 @default.
- W3039366958 cites W2402144811 @default.
- W3039366958 cites W2565516711 @default.
- W3039366958 cites W2577887188 @default.
- W3039366958 cites W2587362299 @default.
- W3039366958 cites W2734408173 @default.
- W3039366958 cites W2738594702 @default.
- W3039366958 cites W2790223875 @default.
- W3039366958 cites W2792764867 @default.
- W3039366958 cites W2808769300 @default.
- W3039366958 cites W2810871807 @default.
- W3039366958 cites W2898434483 @default.
- W3039366958 cites W2962785465 @default.
- W3039366958 cites W2963182751 @default.
- W3039366958 cites W2963408914 @default.
- W3039366958 cites W2964121744 @default.
- W3039366958 cites W2964203186 @default.
- W3039366958 cites W2964203871 @default.
- W3039366958 cites W2966038277 @default.
- W3039366958 cites W2981598692 @default.
- W3039366958 cites W3099908750 @default.
- W3039366958 cites W3104804153 @default.
- W3039366958 doi "https://doi.org/10.1109/twc.2020.3004386" @default.
- W3039366958 hasPublicationYear "2020" @default.
- W3039366958 type Work @default.
- W3039366958 sameAs 3039366958 @default.
- W3039366958 citedByCount "35" @default.
- W3039366958 countsByYear W30393669582021 @default.
- W3039366958 countsByYear W30393669582022 @default.
- W3039366958 countsByYear W30393669582023 @default.
- W3039366958 crossrefType "journal-article" @default.
- W3039366958 hasAuthorship W3039366958A5004316408 @default.
- W3039366958 hasAuthorship W3039366958A5012749654 @default.
- W3039366958 hasAuthorship W3039366958A5028885778 @default.
- W3039366958 hasAuthorship W3039366958A5045154295 @default.
- W3039366958 hasConcept C11413529 @default.
- W3039366958 hasConcept C154945302 @default.
- W3039366958 hasConcept C207987634 @default.
- W3039366958 hasConcept C22789450 @default.
- W3039366958 hasConcept C2776257435 @default.
- W3039366958 hasConcept C41008148 @default.
- W3039366958 hasConcept C50644808 @default.
- W3039366958 hasConcept C54197355 @default.
- W3039366958 hasConcept C65165936 @default.
- W3039366958 hasConcept C76155785 @default.
- W3039366958 hasConceptScore W3039366958C11413529 @default.
- W3039366958 hasConceptScore W3039366958C154945302 @default.
- W3039366958 hasConceptScore W3039366958C207987634 @default.
- W3039366958 hasConceptScore W3039366958C22789450 @default.
- W3039366958 hasConceptScore W3039366958C2776257435 @default.
- W3039366958 hasConceptScore W3039366958C41008148 @default.
- W3039366958 hasConceptScore W3039366958C50644808 @default.
- W3039366958 hasConceptScore W3039366958C54197355 @default.
- W3039366958 hasConceptScore W3039366958C65165936 @default.
- W3039366958 hasConceptScore W3039366958C76155785 @default.
- W3039366958 hasFunder F4320306076 @default.
- W3039366958 hasIssue "10" @default.
- W3039366958 hasLocation W30393669581 @default.
- W3039366958 hasOpenAccess W3039366958 @default.
- W3039366958 hasPrimaryLocation W30393669581 @default.
- W3039366958 hasRelatedWork W1764924767 @default.
- W3039366958 hasRelatedWork W1981144864 @default.
- W3039366958 hasRelatedWork W2036470872 @default.
- W3039366958 hasRelatedWork W2088942251 @default.
- W3039366958 hasRelatedWork W2099682235 @default.