Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039366960> ?p ?o ?g. }
- W3039366960 endingPage "205" @default.
- W3039366960 startingPage "189" @default.
- W3039366960 abstract "According to the World Health Organization, severe lung pathologies bring about 250,000 deaths each year, and by 2030 it will be the third leading cause of death in the world. The usage of (CT) Computed Tomography is a crucial tool to aid medical diagnosis. Several studies, based on the computer vision area, in association with the medical field, provide computational models through machine learning and deep learning. In this study, we created a new feature extractor that works as the Mask R-CNN kernel for lung image segmentation through transfer learning. Our approaches minimize the number of images used by CNN’s training step, thereby also decreasing the number of interactions performed by the network. The model obtained results surpassing the standard results generated by Mask R-CNN, obtaining more than 99% about the metrics of real lung position on CT with our best model Mask + SVM, surpassing methods in the literature reaching 11 seconds for pulmonary segmentation. To present the effectiveness of our approach also in the generalization of models (methods capable of generalizing machine knowledge to other different databases), we carried out experiments also with various databases. The method was able, with only one training based on a single database, to segment CT lung images belonging to another lung database, generating excellent results getting 99% accuracy." @default.
- W3039366960 created "2020-07-10" @default.
- W3039366960 creator A5011654947 @default.
- W3039366960 creator A5048140802 @default.
- W3039366960 creator A5049651824 @default.
- W3039366960 creator A5059650150 @default.
- W3039366960 creator A5070811773 @default.
- W3039366960 date "2021-02-05" @default.
- W3039366960 modified "2023-10-17" @default.
- W3039366960 title "Automatic lung segmentation in CT images using mask R-CNN for mapping the feature extraction in supervised methods of machine learning using transfer learning" @default.
- W3039366960 cites W1849277567 @default.
- W3039366960 cites W1983335560 @default.
- W3039366960 cites W1986649315 @default.
- W3039366960 cites W2010991055 @default.
- W3039366960 cites W2043990114 @default.
- W3039366960 cites W2056637987 @default.
- W3039366960 cites W2088171019 @default.
- W3039366960 cites W2098962362 @default.
- W3039366960 cites W2102605133 @default.
- W3039366960 cites W2109553965 @default.
- W3039366960 cites W2131006320 @default.
- W3039366960 cites W2158698691 @default.
- W3039366960 cites W2165698076 @default.
- W3039366960 cites W2167801685 @default.
- W3039366960 cites W2168477217 @default.
- W3039366960 cites W2251438188 @default.
- W3039366960 cites W2253429366 @default.
- W3039366960 cites W2293337803 @default.
- W3039366960 cites W2295541562 @default.
- W3039366960 cites W2323929895 @default.
- W3039366960 cites W2509434949 @default.
- W3039366960 cites W2560476520 @default.
- W3039366960 cites W2590943167 @default.
- W3039366960 cites W2607941059 @default.
- W3039366960 cites W2726526551 @default.
- W3039366960 cites W2753719132 @default.
- W3039366960 cites W2767346095 @default.
- W3039366960 cites W2773960327 @default.
- W3039366960 cites W2786538735 @default.
- W3039366960 cites W2790031024 @default.
- W3039366960 cites W2790220150 @default.
- W3039366960 cites W2793444752 @default.
- W3039366960 cites W2793818481 @default.
- W3039366960 cites W2793954249 @default.
- W3039366960 cites W2801475611 @default.
- W3039366960 cites W2801973181 @default.
- W3039366960 cites W2806070179 @default.
- W3039366960 cites W2885112059 @default.
- W3039366960 cites W2893747136 @default.
- W3039366960 cites W2899504557 @default.
- W3039366960 cites W2905297666 @default.
- W3039366960 cites W2908300307 @default.
- W3039366960 cites W2917200448 @default.
- W3039366960 cites W2917377703 @default.
- W3039366960 cites W2944639259 @default.
- W3039366960 cites W2946113936 @default.
- W3039366960 cites W2946637868 @default.
- W3039366960 cites W2947276813 @default.
- W3039366960 cites W2949754992 @default.
- W3039366960 cites W2950242408 @default.
- W3039366960 cites W2957764043 @default.
- W3039366960 cites W2962884052 @default.
- W3039366960 cites W2963130832 @default.
- W3039366960 cites W2970946173 @default.
- W3039366960 cites W2972609722 @default.
- W3039366960 cites W2980049849 @default.
- W3039366960 cites W2980766109 @default.
- W3039366960 cites W2987290967 @default.
- W3039366960 cites W2989365632 @default.
- W3039366960 cites W2989731041 @default.
- W3039366960 cites W2990677332 @default.
- W3039366960 cites W2999978966 @default.
- W3039366960 cites W3002907308 @default.
- W3039366960 cites W3007825867 @default.
- W3039366960 cites W3016191673 @default.
- W3039366960 cites W3017125987 @default.
- W3039366960 cites W3100715778 @default.
- W3039366960 cites W3101294892 @default.
- W3039366960 doi "https://doi.org/10.3233/his-200287" @default.
- W3039366960 hasPublicationYear "2021" @default.
- W3039366960 type Work @default.
- W3039366960 sameAs 3039366960 @default.
- W3039366960 citedByCount "6" @default.
- W3039366960 countsByYear W30393669602020 @default.
- W3039366960 countsByYear W30393669602021 @default.
- W3039366960 countsByYear W30393669602022 @default.
- W3039366960 countsByYear W30393669602023 @default.
- W3039366960 crossrefType "journal-article" @default.
- W3039366960 hasAuthorship W3039366960A5011654947 @default.
- W3039366960 hasAuthorship W3039366960A5048140802 @default.
- W3039366960 hasAuthorship W3039366960A5049651824 @default.
- W3039366960 hasAuthorship W3039366960A5059650150 @default.
- W3039366960 hasAuthorship W3039366960A5070811773 @default.
- W3039366960 hasConcept C108583219 @default.
- W3039366960 hasConcept C114614502 @default.
- W3039366960 hasConcept C119857082 @default.
- W3039366960 hasConcept C12267149 @default.
- W3039366960 hasConcept C134306372 @default.