Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039374973> ?p ?o ?g. }
- W3039374973 endingPage "79" @default.
- W3039374973 startingPage "72" @default.
- W3039374973 abstract "Abstract Papermaking wastewater accounts for a large proportion of industrial wastewater, and it is essential to obtain accurate and reliable effluent indices in real-time. Considering the complexity, nonlinearity, and time variability of wastewater treatment processes, a dynamic kernel extreme learning machine (DKELM) method is proposed to predict the key quality indices of effluent chemical oxygen demand (COD). A time lag coefficient is introduced and a kernel function is embedded into the extreme learning machine (ELM) to extract dynamic information and obtain better prediction accuracy. A case study for modeling a wastewater treatment process is demonstrated to evaluate the performance of the proposed DKELM. The results illustrate that both training and prediction accuracy of the DKELM model is superior to other models. For the prediction of the quality indices of effluent COD, the determinate coefficient of the DKELM model is increased by 27.52 %, 21.36 %, 10.42 %, and 10.81 %, compared with partial least squares, ELM, dynamic ELM, and kernel ELM, respectively." @default.
- W3039374973 created "2020-07-10" @default.
- W3039374973 creator A5023069926 @default.
- W3039374973 creator A5056183335 @default.
- W3039374973 creator A5066097652 @default.
- W3039374973 date "2020-10-01" @default.
- W3039374973 modified "2023-10-16" @default.
- W3039374973 title "Prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine" @default.
- W3039374973 cites W1967373691 @default.
- W3039374973 cites W1967511636 @default.
- W3039374973 cites W1990938413 @default.
- W3039374973 cites W1993717606 @default.
- W3039374973 cites W2000651380 @default.
- W3039374973 cites W2004131167 @default.
- W3039374973 cites W2015280929 @default.
- W3039374973 cites W2022668092 @default.
- W3039374973 cites W2026131661 @default.
- W3039374973 cites W2029195896 @default.
- W3039374973 cites W2030184507 @default.
- W3039374973 cites W2045514482 @default.
- W3039374973 cites W2055835575 @default.
- W3039374973 cites W2059648470 @default.
- W3039374973 cites W2063100141 @default.
- W3039374973 cites W2070834008 @default.
- W3039374973 cites W2071606487 @default.
- W3039374973 cites W2074148812 @default.
- W3039374973 cites W2077791644 @default.
- W3039374973 cites W2085174245 @default.
- W3039374973 cites W2091304391 @default.
- W3039374973 cites W2138728394 @default.
- W3039374973 cites W2140327685 @default.
- W3039374973 cites W2152057649 @default.
- W3039374973 cites W2319940424 @default.
- W3039374973 cites W2322097696 @default.
- W3039374973 cites W2344440634 @default.
- W3039374973 cites W2520634214 @default.
- W3039374973 cites W2551832303 @default.
- W3039374973 cites W2622612680 @default.
- W3039374973 cites W2760495993 @default.
- W3039374973 cites W2790025164 @default.
- W3039374973 cites W2883391780 @default.
- W3039374973 cites W2899827404 @default.
- W3039374973 cites W2912766632 @default.
- W3039374973 cites W2966884989 @default.
- W3039374973 cites W2968395168 @default.
- W3039374973 cites W3004395473 @default.
- W3039374973 doi "https://doi.org/10.1016/j.procbio.2020.06.020" @default.
- W3039374973 hasPublicationYear "2020" @default.
- W3039374973 type Work @default.
- W3039374973 sameAs 3039374973 @default.
- W3039374973 citedByCount "38" @default.
- W3039374973 countsByYear W30393749732021 @default.
- W3039374973 countsByYear W30393749732022 @default.
- W3039374973 countsByYear W30393749732023 @default.
- W3039374973 crossrefType "journal-article" @default.
- W3039374973 hasAuthorship W3039374973A5023069926 @default.
- W3039374973 hasAuthorship W3039374973A5056183335 @default.
- W3039374973 hasAuthorship W3039374973A5066097652 @default.
- W3039374973 hasConcept C111472728 @default.
- W3039374973 hasConcept C114614502 @default.
- W3039374973 hasConcept C119857082 @default.
- W3039374973 hasConcept C127413603 @default.
- W3039374973 hasConcept C138885662 @default.
- W3039374973 hasConcept C147455438 @default.
- W3039374973 hasConcept C154945302 @default.
- W3039374973 hasConcept C21880701 @default.
- W3039374973 hasConcept C2779093316 @default.
- W3039374973 hasConcept C2779530757 @default.
- W3039374973 hasConcept C33923547 @default.
- W3039374973 hasConcept C39432304 @default.
- W3039374973 hasConcept C41008148 @default.
- W3039374973 hasConcept C528095902 @default.
- W3039374973 hasConcept C57442070 @default.
- W3039374973 hasConcept C74193536 @default.
- W3039374973 hasConcept C87717796 @default.
- W3039374973 hasConcept C94061648 @default.
- W3039374973 hasConceptScore W3039374973C111472728 @default.
- W3039374973 hasConceptScore W3039374973C114614502 @default.
- W3039374973 hasConceptScore W3039374973C119857082 @default.
- W3039374973 hasConceptScore W3039374973C127413603 @default.
- W3039374973 hasConceptScore W3039374973C138885662 @default.
- W3039374973 hasConceptScore W3039374973C147455438 @default.
- W3039374973 hasConceptScore W3039374973C154945302 @default.
- W3039374973 hasConceptScore W3039374973C21880701 @default.
- W3039374973 hasConceptScore W3039374973C2779093316 @default.
- W3039374973 hasConceptScore W3039374973C2779530757 @default.
- W3039374973 hasConceptScore W3039374973C33923547 @default.
- W3039374973 hasConceptScore W3039374973C39432304 @default.
- W3039374973 hasConceptScore W3039374973C41008148 @default.
- W3039374973 hasConceptScore W3039374973C528095902 @default.
- W3039374973 hasConceptScore W3039374973C57442070 @default.
- W3039374973 hasConceptScore W3039374973C74193536 @default.
- W3039374973 hasConceptScore W3039374973C87717796 @default.
- W3039374973 hasConceptScore W3039374973C94061648 @default.
- W3039374973 hasLocation W30393749731 @default.
- W3039374973 hasOpenAccess W3039374973 @default.
- W3039374973 hasPrimaryLocation W30393749731 @default.
- W3039374973 hasRelatedWork W1999188229 @default.