Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039467114> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3039467114 endingPage "106729" @default.
- W3039467114 startingPage "106729" @default.
- W3039467114 abstract "Malware detection and classification play a critical role in computer and network security. Although, many machine learning models have been used in the detection of malicious binaries, however, the performance of ensemble methods has not been investigated extensively. Besides, the massive volume of malware has established it as a big data problem forcing security researchers and practitioners to deploy big data technologies to manage, store, analyze, and visualize malware data. In this paper, the authors have designed two methods based on ensemble learning and big data for improving the performance of malware detection at a large scale. The first method is based on the weighted voting strategy of ensemble learning, and the second method chooses an optimal set of base classifiers for stacking purpose. The proposed methods are implemented using Apache Spark, a popular big data processing framework, and their performance is tested and evaluated on a dataset of 198,350 Windows files including 100,200 malicious and 98,150 benign samples. The experimental results successfully validate the effectiveness of the proposed approach since it improves the generalization performance in detecting new malware." @default.
- W3039467114 created "2020-07-10" @default.
- W3039467114 creator A5005709855 @default.
- W3039467114 creator A5081667124 @default.
- W3039467114 date "2020-09-01" @default.
- W3039467114 modified "2023-10-14" @default.
- W3039467114 title "Improving malware detection using big data and ensemble learning" @default.
- W3039467114 cites W1965018420 @default.
- W3039467114 cites W2042742130 @default.
- W3039467114 cites W2045157157 @default.
- W3039467114 cites W2056933141 @default.
- W3039467114 cites W2074222960 @default.
- W3039467114 cites W2132521552 @default.
- W3039467114 cites W2160598920 @default.
- W3039467114 cites W2508644642 @default.
- W3039467114 cites W2789539257 @default.
- W3039467114 cites W2883543619 @default.
- W3039467114 doi "https://doi.org/10.1016/j.compeleceng.2020.106729" @default.
- W3039467114 hasPublicationYear "2020" @default.
- W3039467114 type Work @default.
- W3039467114 sameAs 3039467114 @default.
- W3039467114 citedByCount "47" @default.
- W3039467114 countsByYear W30394671142020 @default.
- W3039467114 countsByYear W30394671142021 @default.
- W3039467114 countsByYear W30394671142022 @default.
- W3039467114 countsByYear W30394671142023 @default.
- W3039467114 crossrefType "journal-article" @default.
- W3039467114 hasAuthorship W3039467114A5005709855 @default.
- W3039467114 hasAuthorship W3039467114A5081667124 @default.
- W3039467114 hasConcept C119857082 @default.
- W3039467114 hasConcept C124101348 @default.
- W3039467114 hasConcept C127313418 @default.
- W3039467114 hasConcept C134306372 @default.
- W3039467114 hasConcept C154945302 @default.
- W3039467114 hasConcept C177148314 @default.
- W3039467114 hasConcept C177264268 @default.
- W3039467114 hasConcept C197115733 @default.
- W3039467114 hasConcept C199360897 @default.
- W3039467114 hasConcept C2781215313 @default.
- W3039467114 hasConcept C33923547 @default.
- W3039467114 hasConcept C38652104 @default.
- W3039467114 hasConcept C41008148 @default.
- W3039467114 hasConcept C45942800 @default.
- W3039467114 hasConcept C49204034 @default.
- W3039467114 hasConcept C541664917 @default.
- W3039467114 hasConcept C58489278 @default.
- W3039467114 hasConcept C75684735 @default.
- W3039467114 hasConceptScore W3039467114C119857082 @default.
- W3039467114 hasConceptScore W3039467114C124101348 @default.
- W3039467114 hasConceptScore W3039467114C127313418 @default.
- W3039467114 hasConceptScore W3039467114C134306372 @default.
- W3039467114 hasConceptScore W3039467114C154945302 @default.
- W3039467114 hasConceptScore W3039467114C177148314 @default.
- W3039467114 hasConceptScore W3039467114C177264268 @default.
- W3039467114 hasConceptScore W3039467114C197115733 @default.
- W3039467114 hasConceptScore W3039467114C199360897 @default.
- W3039467114 hasConceptScore W3039467114C2781215313 @default.
- W3039467114 hasConceptScore W3039467114C33923547 @default.
- W3039467114 hasConceptScore W3039467114C38652104 @default.
- W3039467114 hasConceptScore W3039467114C41008148 @default.
- W3039467114 hasConceptScore W3039467114C45942800 @default.
- W3039467114 hasConceptScore W3039467114C49204034 @default.
- W3039467114 hasConceptScore W3039467114C541664917 @default.
- W3039467114 hasConceptScore W3039467114C58489278 @default.
- W3039467114 hasConceptScore W3039467114C75684735 @default.
- W3039467114 hasLocation W30394671141 @default.
- W3039467114 hasOpenAccess W3039467114 @default.
- W3039467114 hasPrimaryLocation W30394671141 @default.
- W3039467114 hasRelatedWork W1764168690 @default.
- W3039467114 hasRelatedWork W2753240997 @default.
- W3039467114 hasRelatedWork W2775776836 @default.
- W3039467114 hasRelatedWork W3152891574 @default.
- W3039467114 hasRelatedWork W3183826413 @default.
- W3039467114 hasRelatedWork W4232632923 @default.
- W3039467114 hasRelatedWork W4284893819 @default.
- W3039467114 hasRelatedWork W4316881845 @default.
- W3039467114 hasRelatedWork W4323520309 @default.
- W3039467114 hasRelatedWork W2097492617 @default.
- W3039467114 hasVolume "86" @default.
- W3039467114 isParatext "false" @default.
- W3039467114 isRetracted "false" @default.
- W3039467114 magId "3039467114" @default.
- W3039467114 workType "article" @default.