Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039478265> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3039478265 abstract "Asthma is a chronic disease of the airways of the lungs. It results in inflammation and narrowing of the respiratory passages, which prevents air flow into the airways and leads to frequent bouts of shortness of breath with wheezing accompanied by coughing and phlegm after exposure to inhalation of substances that provoke allergic reactions or irritation of the respiratory system. Data mining in healthcare system is very important in diagnosing and understanding data, so data mining aims to solve basic problems in diagnosing diseases due to the complexity of diagnosing asthma. Predicting chemicals in the atmosphere is very important and one of the most difficult problems since the last century. In this paper, the impact of chemicals on asthma patient will be presented and discussed. Sensor system called MQ5 will be used to examine the smoke and nitrogen content in the atmosphere. MQ5 will be inserted in a wristwatch that checks the smoke and nitrogen content in the patients place, the system shall issue a warning alarm if this gas affects the person with asthma. It will be based on the Artificial Neural Networks (ANN) algorithm that has been built using data that containing a set of chemicals such as carbon monoxide, NMHC (GT) acid gas, C6H6 (GT) Gasoline, NOx (GT) Nitrogen Oxide, and NO2 (GT) Nitrogen Dioxide. The temperature and humidity will be also used as they can negatively affect asthma patient. Finally, the rating model was evaluated and achieved 99.58% classification accuracy." @default.
- W3039478265 created "2020-07-10" @default.
- W3039478265 creator A5006132532 @default.
- W3039478265 creator A5040909074 @default.
- W3039478265 creator A5046657176 @default.
- W3039478265 date "2020-01-01" @default.
- W3039478265 modified "2023-09-26" @default.
- W3039478265 title "Intelligent Risk Alarm for Asthma Patients using Artificial Neural Networks" @default.
- W3039478265 cites W2765544393 @default.
- W3039478265 cites W2886172374 @default.
- W3039478265 cites W2900962189 @default.
- W3039478265 cites W2963544331 @default.
- W3039478265 cites W3014987710 @default.
- W3039478265 doi "https://doi.org/10.14569/ijacsa.2020.0110612" @default.
- W3039478265 hasPublicationYear "2020" @default.
- W3039478265 type Work @default.
- W3039478265 sameAs 3039478265 @default.
- W3039478265 citedByCount "5" @default.
- W3039478265 countsByYear W30394782652021 @default.
- W3039478265 countsByYear W30394782652022 @default.
- W3039478265 crossrefType "journal-article" @default.
- W3039478265 hasAuthorship W3039478265A5006132532 @default.
- W3039478265 hasAuthorship W3039478265A5040909074 @default.
- W3039478265 hasAuthorship W3039478265A5046657176 @default.
- W3039478265 hasBestOaLocation W30394782651 @default.
- W3039478265 hasConcept C126322002 @default.
- W3039478265 hasConcept C142724271 @default.
- W3039478265 hasConcept C159985019 @default.
- W3039478265 hasConcept C178790620 @default.
- W3039478265 hasConcept C185592680 @default.
- W3039478265 hasConcept C188947578 @default.
- W3039478265 hasConcept C192562407 @default.
- W3039478265 hasConcept C204787440 @default.
- W3039478265 hasConcept C2776042228 @default.
- W3039478265 hasConcept C2778731716 @default.
- W3039478265 hasConcept C2779119184 @default.
- W3039478265 hasConcept C2780723490 @default.
- W3039478265 hasConcept C41008148 @default.
- W3039478265 hasConcept C71924100 @default.
- W3039478265 hasConceptScore W3039478265C126322002 @default.
- W3039478265 hasConceptScore W3039478265C142724271 @default.
- W3039478265 hasConceptScore W3039478265C159985019 @default.
- W3039478265 hasConceptScore W3039478265C178790620 @default.
- W3039478265 hasConceptScore W3039478265C185592680 @default.
- W3039478265 hasConceptScore W3039478265C188947578 @default.
- W3039478265 hasConceptScore W3039478265C192562407 @default.
- W3039478265 hasConceptScore W3039478265C204787440 @default.
- W3039478265 hasConceptScore W3039478265C2776042228 @default.
- W3039478265 hasConceptScore W3039478265C2778731716 @default.
- W3039478265 hasConceptScore W3039478265C2779119184 @default.
- W3039478265 hasConceptScore W3039478265C2780723490 @default.
- W3039478265 hasConceptScore W3039478265C41008148 @default.
- W3039478265 hasConceptScore W3039478265C71924100 @default.
- W3039478265 hasIssue "6" @default.
- W3039478265 hasLocation W30394782651 @default.
- W3039478265 hasLocation W30394782652 @default.
- W3039478265 hasOpenAccess W3039478265 @default.
- W3039478265 hasPrimaryLocation W30394782651 @default.
- W3039478265 hasRelatedWork W2018948120 @default.
- W3039478265 hasRelatedWork W2052139239 @default.
- W3039478265 hasRelatedWork W2374430816 @default.
- W3039478265 hasRelatedWork W2410569622 @default.
- W3039478265 hasRelatedWork W2748952813 @default.
- W3039478265 hasRelatedWork W2899084033 @default.
- W3039478265 hasRelatedWork W3039478265 @default.
- W3039478265 hasRelatedWork W4235375593 @default.
- W3039478265 hasRelatedWork W4322724676 @default.
- W3039478265 hasRelatedWork W4322728326 @default.
- W3039478265 hasVolume "11" @default.
- W3039478265 isParatext "false" @default.
- W3039478265 isRetracted "false" @default.
- W3039478265 magId "3039478265" @default.
- W3039478265 workType "article" @default.