Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039488327> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3039488327 abstract "This work shows that a massive multiple-input multiple-output (MIMO) system with low-resolution analog-to-digital converters (ADCs) forms a natural extreme learning machine (ELM). The receive antennas at the base station serve as the hidden nodes of the ELM, and the low-resolution ADCs act as the ELM activation function. By adding random biases to the received signals and optimizing the ELM output weights, the system can effectively tackle hardware impairments, such as the nonlinearity of power amplifiers and the low-resolution ADCs. Moreover, the fast adaptive capability of ELM allows the design of an adaptive receiver to address time-varying effects of MIMO channels. Simulations demonstrate the promising performance of the ELM-based receiver compared to conventional receivers in dealing with hardware impairments." @default.
- W3039488327 created "2020-07-10" @default.
- W3039488327 creator A5005913897 @default.
- W3039488327 creator A5049177080 @default.
- W3039488327 creator A5069197900 @default.
- W3039488327 date "2020-07-01" @default.
- W3039488327 modified "2023-10-16" @default.
- W3039488327 title "Massive MIMO As an Extreme Learning Machine" @default.
- W3039488327 cites W1977915375 @default.
- W3039488327 cites W2054692642 @default.
- W3039488327 cites W2074447193 @default.
- W3039488327 cites W2098725264 @default.
- W3039488327 cites W2101397645 @default.
- W3039488327 cites W2111072639 @default.
- W3039488327 cites W2134410724 @default.
- W3039488327 cites W2150973794 @default.
- W3039488327 cites W2154852616 @default.
- W3039488327 cites W2158054309 @default.
- W3039488327 cites W2171395034 @default.
- W3039488327 cites W2263894897 @default.
- W3039488327 cites W2493390539 @default.
- W3039488327 cites W2884140695 @default.
- W3039488327 cites W2944933595 @default.
- W3039488327 cites W2946071064 @default.
- W3039488327 cites W2980032836 @default.
- W3039488327 cites W2988549429 @default.
- W3039488327 cites W3008026851 @default.
- W3039488327 cites W3100399470 @default.
- W3039488327 cites W3106866071 @default.
- W3039488327 doi "https://doi.org/10.48550/arxiv.2007.00221" @default.
- W3039488327 hasPublicationYear "2020" @default.
- W3039488327 type Work @default.
- W3039488327 sameAs 3039488327 @default.
- W3039488327 citedByCount "0" @default.
- W3039488327 crossrefType "posted-content" @default.
- W3039488327 hasAuthorship W3039488327A5005913897 @default.
- W3039488327 hasAuthorship W3039488327A5049177080 @default.
- W3039488327 hasAuthorship W3039488327A5069197900 @default.
- W3039488327 hasBestOaLocation W30394883271 @default.
- W3039488327 hasConcept C121332964 @default.
- W3039488327 hasConcept C127162648 @default.
- W3039488327 hasConcept C127413603 @default.
- W3039488327 hasConcept C154945302 @default.
- W3039488327 hasConcept C163258240 @default.
- W3039488327 hasConcept C194257627 @default.
- W3039488327 hasConcept C207987634 @default.
- W3039488327 hasConcept C24326235 @default.
- W3039488327 hasConcept C2776257435 @default.
- W3039488327 hasConcept C2778422915 @default.
- W3039488327 hasConcept C2780150128 @default.
- W3039488327 hasConcept C41008148 @default.
- W3039488327 hasConcept C50644808 @default.
- W3039488327 hasConcept C62520636 @default.
- W3039488327 hasConcept C76155785 @default.
- W3039488327 hasConceptScore W3039488327C121332964 @default.
- W3039488327 hasConceptScore W3039488327C127162648 @default.
- W3039488327 hasConceptScore W3039488327C127413603 @default.
- W3039488327 hasConceptScore W3039488327C154945302 @default.
- W3039488327 hasConceptScore W3039488327C163258240 @default.
- W3039488327 hasConceptScore W3039488327C194257627 @default.
- W3039488327 hasConceptScore W3039488327C207987634 @default.
- W3039488327 hasConceptScore W3039488327C24326235 @default.
- W3039488327 hasConceptScore W3039488327C2776257435 @default.
- W3039488327 hasConceptScore W3039488327C2778422915 @default.
- W3039488327 hasConceptScore W3039488327C2780150128 @default.
- W3039488327 hasConceptScore W3039488327C41008148 @default.
- W3039488327 hasConceptScore W3039488327C50644808 @default.
- W3039488327 hasConceptScore W3039488327C62520636 @default.
- W3039488327 hasConceptScore W3039488327C76155785 @default.
- W3039488327 hasLocation W30394883271 @default.
- W3039488327 hasOpenAccess W3039488327 @default.
- W3039488327 hasPrimaryLocation W30394883271 @default.
- W3039488327 hasRelatedWork W10224409 @default.
- W3039488327 hasRelatedWork W11433008 @default.
- W3039488327 hasRelatedWork W12199175 @default.
- W3039488327 hasRelatedWork W12338472 @default.
- W3039488327 hasRelatedWork W3033891 @default.
- W3039488327 hasRelatedWork W5723503 @default.
- W3039488327 hasRelatedWork W6068998 @default.
- W3039488327 hasRelatedWork W6345444 @default.
- W3039488327 hasRelatedWork W6364865 @default.
- W3039488327 hasRelatedWork W9277439 @default.
- W3039488327 isParatext "false" @default.
- W3039488327 isRetracted "false" @default.
- W3039488327 magId "3039488327" @default.
- W3039488327 workType "article" @default.