Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039551824> ?p ?o ?g. }
- W3039551824 endingPage "12" @default.
- W3039551824 startingPage "1" @default.
- W3039551824 abstract "This paper mainly discusses the hybrid application of ensemble learning, classification, and feature selection (FS) algorithms simultaneously based on training data balancing for helping the proposed credit scoring model perform more effectively, which comprises three major stages. Firstly, it conducts preprocessing for collected credit data. Then, an efficient feature selection algorithm based on adaptive elastic net is employed to reduce the weakly related or uncorrelated variables to get high-quality training data. Thirdly, a novel ensemble strategy is proposed to make the imbalanced training data set balanced for each extreme learning machine (ELM) classifier. Finally, a new weighting method for single ELM classifiers in the ensemble model is established with respect to their classification accuracy based on generalized fuzzy soft sets (GFSS) theory. A novel cosine-based distance measurement algorithm of GFSS is also proposed to calculate the weights of each ELM classifier. To confirm the efficiency of the proposed ensemble credit scoring model, we implemented experiments with real-world credit data sets for comparison. The process of analysis, outcomes, and mathematical tests proved that the proposed model is capable of improving the effectiveness of classification in average accuracy, area under the curve (AUC), H-measure, and Brier’s score compared to all other single classifiers and ensemble approaches." @default.
- W3039551824 created "2020-07-10" @default.
- W3039551824 creator A5013791920 @default.
- W3039551824 creator A5031303443 @default.
- W3039551824 creator A5043517425 @default.
- W3039551824 creator A5081627187 @default.
- W3039551824 date "2020-06-30" @default.
- W3039551824 modified "2023-10-14" @default.
- W3039551824 title "A Novel Ensemble Credit Scoring Model Based on Extreme Learning Machine and Generalized Fuzzy Soft Sets" @default.
- W3039551824 cites W1595152431 @default.
- W3039551824 cites W1963607983 @default.
- W3039551824 cites W1976035027 @default.
- W3039551824 cites W1978352585 @default.
- W3039551824 cites W1980798497 @default.
- W3039551824 cites W1984533548 @default.
- W3039551824 cites W1994184873 @default.
- W3039551824 cites W2015954856 @default.
- W3039551824 cites W2029869759 @default.
- W3039551824 cites W2036547589 @default.
- W3039551824 cites W2045516668 @default.
- W3039551824 cites W2075490785 @default.
- W3039551824 cites W2083862258 @default.
- W3039551824 cites W2122825543 @default.
- W3039551824 cites W2162397980 @default.
- W3039551824 cites W2273893358 @default.
- W3039551824 cites W2278519563 @default.
- W3039551824 cites W2473172823 @default.
- W3039551824 cites W2598548966 @default.
- W3039551824 cites W2610859693 @default.
- W3039551824 cites W2612634114 @default.
- W3039551824 cites W2614275469 @default.
- W3039551824 cites W2616541616 @default.
- W3039551824 cites W2619951045 @default.
- W3039551824 cites W2700766797 @default.
- W3039551824 cites W2761700016 @default.
- W3039551824 cites W2766296277 @default.
- W3039551824 cites W2783336591 @default.
- W3039551824 cites W2785544465 @default.
- W3039551824 cites W2789983388 @default.
- W3039551824 cites W2797565471 @default.
- W3039551824 cites W2799791930 @default.
- W3039551824 cites W2805274166 @default.
- W3039551824 cites W2885877913 @default.
- W3039551824 cites W2892327480 @default.
- W3039551824 cites W2892731198 @default.
- W3039551824 cites W2897554671 @default.
- W3039551824 cites W2898991205 @default.
- W3039551824 cites W2908640594 @default.
- W3039551824 cites W2933331543 @default.
- W3039551824 cites W3010339645 @default.
- W3039551824 cites W430137803 @default.
- W3039551824 doi "https://doi.org/10.1155/2020/7504764" @default.
- W3039551824 hasPublicationYear "2020" @default.
- W3039551824 type Work @default.
- W3039551824 sameAs 3039551824 @default.
- W3039551824 citedByCount "7" @default.
- W3039551824 countsByYear W30395518242020 @default.
- W3039551824 countsByYear W30395518242021 @default.
- W3039551824 countsByYear W30395518242022 @default.
- W3039551824 countsByYear W30395518242023 @default.
- W3039551824 crossrefType "journal-article" @default.
- W3039551824 hasAuthorship W3039551824A5013791920 @default.
- W3039551824 hasAuthorship W3039551824A5031303443 @default.
- W3039551824 hasAuthorship W3039551824A5043517425 @default.
- W3039551824 hasAuthorship W3039551824A5081627187 @default.
- W3039551824 hasBestOaLocation W30395518241 @default.
- W3039551824 hasConcept C10551718 @default.
- W3039551824 hasConcept C119857082 @default.
- W3039551824 hasConcept C124101348 @default.
- W3039551824 hasConcept C126838900 @default.
- W3039551824 hasConcept C148483581 @default.
- W3039551824 hasConcept C153180895 @default.
- W3039551824 hasConcept C154945302 @default.
- W3039551824 hasConcept C183115368 @default.
- W3039551824 hasConcept C2780150128 @default.
- W3039551824 hasConcept C34736171 @default.
- W3039551824 hasConcept C41008148 @default.
- W3039551824 hasConcept C50644808 @default.
- W3039551824 hasConcept C58166 @default.
- W3039551824 hasConcept C71924100 @default.
- W3039551824 hasConcept C95623464 @default.
- W3039551824 hasConceptScore W3039551824C10551718 @default.
- W3039551824 hasConceptScore W3039551824C119857082 @default.
- W3039551824 hasConceptScore W3039551824C124101348 @default.
- W3039551824 hasConceptScore W3039551824C126838900 @default.
- W3039551824 hasConceptScore W3039551824C148483581 @default.
- W3039551824 hasConceptScore W3039551824C153180895 @default.
- W3039551824 hasConceptScore W3039551824C154945302 @default.
- W3039551824 hasConceptScore W3039551824C183115368 @default.
- W3039551824 hasConceptScore W3039551824C2780150128 @default.
- W3039551824 hasConceptScore W3039551824C34736171 @default.
- W3039551824 hasConceptScore W3039551824C41008148 @default.
- W3039551824 hasConceptScore W3039551824C50644808 @default.
- W3039551824 hasConceptScore W3039551824C58166 @default.
- W3039551824 hasConceptScore W3039551824C71924100 @default.
- W3039551824 hasConceptScore W3039551824C95623464 @default.
- W3039551824 hasFunder F4320321106 @default.
- W3039551824 hasLocation W30395518241 @default.