Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039553608> ?p ?o ?g. }
- W3039553608 endingPage "e000381" @default.
- W3039553608 startingPage "e000381" @default.
- W3039553608 abstract "Background Genetic variations of some driver genes in non-small cell lung cancer (NSCLC) had shown potential impact on immune microenvironment and associated with response or resistance to programmed cell death protein 1 (PD-1) blockade immunotherapy. We therefore undertook an exploratory analysis to develop a genomic mutation signature (GMS) and predict the response to anti-PD-(L)1 therapy. Methods In this multicohort analysis, 316 patients with non-squamous NSCLC treated with anti-PD-(L)1 from three independent cohorts were included in our study. Tumor samples from the patients were molecularly profiled by MSK-IMPACT or whole exome sequencing. We developed a risk model named GMS based on the MSK training cohort (n=123). The predictive model was first validated in the separate internal MSK cohort (n=82) and then validated in an external cohort containing 111 patients from previously published clinical trials. Results A GMS risk model consisting of eight genes ( TP53 , KRAS , STK11 , EGFR , PTPRD , KMT2C , SMAD4 , and HGF ) was generated to classify patients into high and low GMS groups in the training cohort. Patients with high GMS in the training cohort had longer progression-free survival (hazard ratio (HR) 0.41, 0.28–0.61, p < 0.0001) and overall survival (HR 0.53, 0.32–0.89, p = 0.0275) compared with low GMS. We noted equivalent findings in the internal validation cohort and in the external validation cohort. The GMS was demonstrated as an independent predictive factor for anti-PD-(L)1 therapy comparing with tumor mutational burden. Meanwhile, GMS showed undifferentiated predictive value in patients with different clinicopathological features. Notably, both GMS and PD-L1 were independent predictors and demonstrated poorly correlated; inclusion of PD-L1 with GMS further improved the predictive capacity for PD-1 blockade immunotherapy. Conclusions Our study highlights the potential predictive value of GMS for immunotherapeutic benefit in non-squamous NSCLC. Besides, the combination of GMS and PD-L1 may serve as an optimal partner in guiding treatment decisions for anti-PD-(L)1 based therapy." @default.
- W3039553608 created "2020-07-10" @default.
- W3039553608 creator A5004598929 @default.
- W3039553608 creator A5005771202 @default.
- W3039553608 creator A5013900870 @default.
- W3039553608 creator A5016050402 @default.
- W3039553608 creator A5025163492 @default.
- W3039553608 creator A5032764121 @default.
- W3039553608 creator A5041185116 @default.
- W3039553608 creator A5051333023 @default.
- W3039553608 creator A5057356935 @default.
- W3039553608 creator A5061124156 @default.
- W3039553608 creator A5063192831 @default.
- W3039553608 creator A5068967911 @default.
- W3039553608 creator A5076510736 @default.
- W3039553608 creator A5087400213 @default.
- W3039553608 date "2020-06-01" @default.
- W3039553608 modified "2023-10-04" @default.
- W3039553608 title "Development and validation of a genomic mutation signature to predict response to PD-1 inhibitors in non-squamous NSCLC: a multicohort stud" @default.
- W3039553608 cites W2049553585 @default.
- W3039553608 cites W2104885590 @default.
- W3039553608 cites W2152061559 @default.
- W3039553608 cites W2160834915 @default.
- W3039553608 cites W2240760035 @default.
- W3039553608 cites W2273119405 @default.
- W3039553608 cites W2346113315 @default.
- W3039553608 cites W2465860350 @default.
- W3039553608 cites W2544109448 @default.
- W3039553608 cites W2561459036 @default.
- W3039553608 cites W2586341031 @default.
- W3039553608 cites W2589594887 @default.
- W3039553608 cites W2613362156 @default.
- W3039553608 cites W2737044461 @default.
- W3039553608 cites W2783897381 @default.
- W3039553608 cites W2790362775 @default.
- W3039553608 cites W2796582438 @default.
- W3039553608 cites W2797675588 @default.
- W3039553608 cites W2797855256 @default.
- W3039553608 cites W2804812017 @default.
- W3039553608 cites W2808137788 @default.
- W3039553608 cites W2888546921 @default.
- W3039553608 cites W2899204048 @default.
- W3039553608 cites W2908684819 @default.
- W3039553608 cites W2909679049 @default.
- W3039553608 cites W3123922087 @default.
- W3039553608 doi "https://doi.org/10.1136/jitc-2019-000381" @default.
- W3039553608 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7328897" @default.
- W3039553608 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32606052" @default.
- W3039553608 hasPublicationYear "2020" @default.
- W3039553608 type Work @default.
- W3039553608 sameAs 3039553608 @default.
- W3039553608 citedByCount "32" @default.
- W3039553608 countsByYear W30395536082020 @default.
- W3039553608 countsByYear W30395536082021 @default.
- W3039553608 countsByYear W30395536082022 @default.
- W3039553608 countsByYear W30395536082023 @default.
- W3039553608 crossrefType "journal-article" @default.
- W3039553608 hasAuthorship W3039553608A5004598929 @default.
- W3039553608 hasAuthorship W3039553608A5005771202 @default.
- W3039553608 hasAuthorship W3039553608A5013900870 @default.
- W3039553608 hasAuthorship W3039553608A5016050402 @default.
- W3039553608 hasAuthorship W3039553608A5025163492 @default.
- W3039553608 hasAuthorship W3039553608A5032764121 @default.
- W3039553608 hasAuthorship W3039553608A5041185116 @default.
- W3039553608 hasAuthorship W3039553608A5051333023 @default.
- W3039553608 hasAuthorship W3039553608A5057356935 @default.
- W3039553608 hasAuthorship W3039553608A5061124156 @default.
- W3039553608 hasAuthorship W3039553608A5063192831 @default.
- W3039553608 hasAuthorship W3039553608A5068967911 @default.
- W3039553608 hasAuthorship W3039553608A5076510736 @default.
- W3039553608 hasAuthorship W3039553608A5087400213 @default.
- W3039553608 hasBestOaLocation W30395536081 @default.
- W3039553608 hasConcept C104317684 @default.
- W3039553608 hasConcept C121608353 @default.
- W3039553608 hasConcept C126322002 @default.
- W3039553608 hasConcept C143998085 @default.
- W3039553608 hasConcept C16671776 @default.
- W3039553608 hasConcept C207103383 @default.
- W3039553608 hasConcept C2776256026 @default.
- W3039553608 hasConcept C2777983448 @default.
- W3039553608 hasConcept C2781187634 @default.
- W3039553608 hasConcept C44249647 @default.
- W3039553608 hasConcept C501734568 @default.
- W3039553608 hasConcept C50382708 @default.
- W3039553608 hasConcept C526805850 @default.
- W3039553608 hasConcept C54355233 @default.
- W3039553608 hasConcept C71924100 @default.
- W3039553608 hasConcept C72563966 @default.
- W3039553608 hasConcept C86803240 @default.
- W3039553608 hasConceptScore W3039553608C104317684 @default.
- W3039553608 hasConceptScore W3039553608C121608353 @default.
- W3039553608 hasConceptScore W3039553608C126322002 @default.
- W3039553608 hasConceptScore W3039553608C143998085 @default.
- W3039553608 hasConceptScore W3039553608C16671776 @default.
- W3039553608 hasConceptScore W3039553608C207103383 @default.
- W3039553608 hasConceptScore W3039553608C2776256026 @default.
- W3039553608 hasConceptScore W3039553608C2777983448 @default.
- W3039553608 hasConceptScore W3039553608C2781187634 @default.