Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039563973> ?p ?o ?g. }
- W3039563973 endingPage "119" @default.
- W3039563973 startingPage "114" @default.
- W3039563973 abstract "The most widely used novel coronavirus (COVID-19) detection technique is a real-time polymerase chain reaction (RT-PCR). However, RT-PCR kits are costly and take 6-9 hours to confirm infection in the patient. Due to less sensitivity of RT-PCR, it provides high false-negative results. To resolve this problem, radiological imaging techniques such as chest X-rays and computed tomography (CT) are used to detect and diagnose COVID-19. In this paper, chest X-rays is preferred over CT scan. The reason behind this is that X-rays machines are available in most of the hospitals. X-rays machines are cheaper than the CT scan machine. Besides this, X-rays has low ionizing radiations than CT scan. COVID-19 reveals some radiological signatures that can be easily detected through chest X-rays. For this, radiologists are required to analyze these signatures. However, it is a time-consuming and error-prone task. Hence, there is a need to automate the analysis of chest X-rays. The automatic analysis of chest X-rays can be done through deep learning-based approaches, which may accelerate the analysis time. These approaches can train the weights of networks on large datasets as well as fine-tuning the weights of pre-trained networks on small datasets. However, these approaches applied to chest X-rays are very limited. Hence, the main objective of this paper is to develop an automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays by using the extreme version of the Inception (Xception) model. Extensive comparative analyses show that the proposed model performs significantly better as compared to the existing models." @default.
- W3039563973 created "2020-07-10" @default.
- W3039563973 creator A5004575378 @default.
- W3039563973 creator A5013150230 @default.
- W3039563973 creator A5071634041 @default.
- W3039563973 creator A5073142640 @default.
- W3039563973 creator A5074179418 @default.
- W3039563973 date "2022-04-01" @default.
- W3039563973 modified "2023-10-16" @default.
- W3039563973 title "Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-rays" @default.
- W3039563973 cites W2753793172 @default.
- W3039563973 cites W2792399781 @default.
- W3039563973 cites W2796426886 @default.
- W3039563973 cites W2883627447 @default.
- W3039563973 cites W2890489646 @default.
- W3039563973 cites W2898362616 @default.
- W3039563973 cites W2917967053 @default.
- W3039563973 cites W2921528463 @default.
- W3039563973 cites W2942810189 @default.
- W3039563973 cites W2948260310 @default.
- W3039563973 cites W2952201814 @default.
- W3039563973 cites W2973638934 @default.
- W3039563973 cites W2990114939 @default.
- W3039563973 cites W3003617865 @default.
- W3039563973 cites W3006082171 @default.
- W3039563973 cites W3006110666 @default.
- W3039563973 cites W3006583578 @default.
- W3039563973 cites W3006771233 @default.
- W3039563973 cites W3012817508 @default.
- W3039563973 cites W3013099522 @default.
- W3039563973 cites W3013601031 @default.
- W3039563973 cites W3016488464 @default.
- W3039563973 cites W3016685184 @default.
- W3039563973 cites W3017403618 @default.
- W3039563973 cites W3017855299 @default.
- W3039563973 cites W3020257030 @default.
- W3039563973 cites W3021917713 @default.
- W3039563973 cites W3022719712 @default.
- W3039563973 cites W3025953162 @default.
- W3039563973 cites W3083753334 @default.
- W3039563973 cites W3105081694 @default.
- W3039563973 cites W3162351260 @default.
- W3039563973 doi "https://doi.org/10.1016/j.irbm.2020.07.001" @default.
- W3039563973 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7333623" @default.
- W3039563973 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32837679" @default.
- W3039563973 hasPublicationYear "2022" @default.
- W3039563973 type Work @default.
- W3039563973 sameAs 3039563973 @default.
- W3039563973 citedByCount "149" @default.
- W3039563973 countsByYear W30395639732020 @default.
- W3039563973 countsByYear W30395639732021 @default.
- W3039563973 countsByYear W30395639732022 @default.
- W3039563973 countsByYear W30395639732023 @default.
- W3039563973 crossrefType "journal-article" @default.
- W3039563973 hasAuthorship W3039563973A5004575378 @default.
- W3039563973 hasAuthorship W3039563973A5013150230 @default.
- W3039563973 hasAuthorship W3039563973A5071634041 @default.
- W3039563973 hasAuthorship W3039563973A5073142640 @default.
- W3039563973 hasAuthorship W3039563973A5074179418 @default.
- W3039563973 hasBestOaLocation W30395639731 @default.
- W3039563973 hasConcept C108583219 @default.
- W3039563973 hasConcept C142724271 @default.
- W3039563973 hasConcept C150899416 @default.
- W3039563973 hasConcept C153180895 @default.
- W3039563973 hasConcept C154945302 @default.
- W3039563973 hasConcept C2779134260 @default.
- W3039563973 hasConcept C3008058167 @default.
- W3039563973 hasConcept C41008148 @default.
- W3039563973 hasConcept C524204448 @default.
- W3039563973 hasConcept C71924100 @default.
- W3039563973 hasConceptScore W3039563973C108583219 @default.
- W3039563973 hasConceptScore W3039563973C142724271 @default.
- W3039563973 hasConceptScore W3039563973C150899416 @default.
- W3039563973 hasConceptScore W3039563973C153180895 @default.
- W3039563973 hasConceptScore W3039563973C154945302 @default.
- W3039563973 hasConceptScore W3039563973C2779134260 @default.
- W3039563973 hasConceptScore W3039563973C3008058167 @default.
- W3039563973 hasConceptScore W3039563973C41008148 @default.
- W3039563973 hasConceptScore W3039563973C524204448 @default.
- W3039563973 hasConceptScore W3039563973C71924100 @default.
- W3039563973 hasIssue "2" @default.
- W3039563973 hasLocation W30395639731 @default.
- W3039563973 hasLocation W30395639732 @default.
- W3039563973 hasLocation W30395639733 @default.
- W3039563973 hasOpenAccess W3039563973 @default.
- W3039563973 hasPrimaryLocation W30395639731 @default.
- W3039563973 hasRelatedWork W2889705046 @default.
- W3039563973 hasRelatedWork W3018421652 @default.
- W3039563973 hasRelatedWork W3091976719 @default.
- W3039563973 hasRelatedWork W3125347568 @default.
- W3039563973 hasRelatedWork W3192840557 @default.
- W3039563973 hasRelatedWork W3195938642 @default.
- W3039563973 hasRelatedWork W3200268767 @default.
- W3039563973 hasRelatedWork W4213299466 @default.
- W3039563973 hasRelatedWork W4292874285 @default.
- W3039563973 hasRelatedWork W4382286161 @default.
- W3039563973 hasVolume "43" @default.
- W3039563973 isParatext "false" @default.