Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039583663> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W3039583663 abstract "Variability in the El Niño-Southern Oscillation (ENSO) has global impacts on seasonal temperatures and rainfall. Current detection methods for extreme phases, which occur with irregular periodicity, rely upon sea surface temperature anomalies within a strictly defined geographic region of the Pacific Ocean. However, under changing climate conditions and ocean warming, these historically motivated indicators may not be reliable into the future. In this work, we demonstrate the power of data clustering as a robust, automatic way to detect anomalies in climate patterns. Ocean temperature profiles from Argo floats are partitioned into similar groups utilizing unsupervised machine learning methods. The automatically identified groups of measurements represent spatially coherent, large-scale water masses in the Pacific, despite no inclusion of geospatial information in the clustering task. Further, spatiotemporal dynamics of the clusters are strongly indicative of El Niño events, the east Pacific warming phase of ENSO. The fitting of a cluster model on a collection of ocean profiles identifies changes in the vertical structure of the temperature profiles through reassignment to a different group, concisely capturing physical changes to the water column during an El Niño event, such as thermocline tilting. Clustering proves to be an effective tool for analysis of the irregularly sampled (in space and time) data from Argo floats and may serve as a novel approach for detecting anomalies given the freedom from thresholding decisions. Unsupervised machine learning could be particularly valuable due to its ability to identify patterns in data sets without user-imposed expectations, facilitating further discovery of anomaly indicators." @default.
- W3039583663 created "2020-07-10" @default.
- W3039583663 creator A5016000044 @default.
- W3039583663 creator A5031768800 @default.
- W3039583663 date "2020-09-01" @default.
- W3039583663 modified "2023-10-02" @default.
- W3039583663 title "El Niño Detection Via Unsupervised Clustering of Argo Temperature Profiles" @default.
- W3039583663 cites W1128809682 @default.
- W3039583663 cites W1643329864 @default.
- W3039583663 cites W164449598 @default.
- W3039583663 cites W1975572099 @default.
- W3039583663 cites W1987971958 @default.
- W3039583663 cites W1989425634 @default.
- W3039583663 cites W1994654959 @default.
- W3039583663 cites W1997759687 @default.
- W3039583663 cites W2011430131 @default.
- W3039583663 cites W2023875545 @default.
- W3039583663 cites W2033403400 @default.
- W3039583663 cites W2077170384 @default.
- W3039583663 cites W2090029279 @default.
- W3039583663 cites W2140602065 @default.
- W3039583663 cites W2163722960 @default.
- W3039583663 cites W2172472270 @default.
- W3039583663 cites W2175490306 @default.
- W3039583663 cites W2177885470 @default.
- W3039583663 cites W2272850945 @default.
- W3039583663 cites W2551855175 @default.
- W3039583663 cites W2561227684 @default.
- W3039583663 cites W2582727962 @default.
- W3039583663 cites W2883361486 @default.
- W3039583663 cites W2906924529 @default.
- W3039583663 cites W2963008249 @default.
- W3039583663 cites W2979857417 @default.
- W3039583663 doi "https://doi.org/10.1029/2019jc015947" @default.
- W3039583663 hasPublicationYear "2020" @default.
- W3039583663 type Work @default.
- W3039583663 sameAs 3039583663 @default.
- W3039583663 citedByCount "8" @default.
- W3039583663 countsByYear W30395836632021 @default.
- W3039583663 countsByYear W30395836632022 @default.
- W3039583663 countsByYear W30395836632023 @default.
- W3039583663 crossrefType "journal-article" @default.
- W3039583663 hasAuthorship W3039583663A5016000044 @default.
- W3039583663 hasAuthorship W3039583663A5031768800 @default.
- W3039583663 hasConcept C105824904 @default.
- W3039583663 hasConcept C115961682 @default.
- W3039583663 hasConcept C121332964 @default.
- W3039583663 hasConcept C124101348 @default.
- W3039583663 hasConcept C127313418 @default.
- W3039583663 hasConcept C12997251 @default.
- W3039583663 hasConcept C134097258 @default.
- W3039583663 hasConcept C154945302 @default.
- W3039583663 hasConcept C191178318 @default.
- W3039583663 hasConcept C26873012 @default.
- W3039583663 hasConcept C41008148 @default.
- W3039583663 hasConcept C49204034 @default.
- W3039583663 hasConcept C51614570 @default.
- W3039583663 hasConcept C73555534 @default.
- W3039583663 hasConcept C739882 @default.
- W3039583663 hasConcept C8038995 @default.
- W3039583663 hasConceptScore W3039583663C105824904 @default.
- W3039583663 hasConceptScore W3039583663C115961682 @default.
- W3039583663 hasConceptScore W3039583663C121332964 @default.
- W3039583663 hasConceptScore W3039583663C124101348 @default.
- W3039583663 hasConceptScore W3039583663C127313418 @default.
- W3039583663 hasConceptScore W3039583663C12997251 @default.
- W3039583663 hasConceptScore W3039583663C134097258 @default.
- W3039583663 hasConceptScore W3039583663C154945302 @default.
- W3039583663 hasConceptScore W3039583663C191178318 @default.
- W3039583663 hasConceptScore W3039583663C26873012 @default.
- W3039583663 hasConceptScore W3039583663C41008148 @default.
- W3039583663 hasConceptScore W3039583663C49204034 @default.
- W3039583663 hasConceptScore W3039583663C51614570 @default.
- W3039583663 hasConceptScore W3039583663C73555534 @default.
- W3039583663 hasConceptScore W3039583663C739882 @default.
- W3039583663 hasConceptScore W3039583663C8038995 @default.
- W3039583663 hasFunder F4320306076 @default.
- W3039583663 hasIssue "9" @default.
- W3039583663 hasLocation W30395836631 @default.
- W3039583663 hasOpenAccess W3039583663 @default.
- W3039583663 hasPrimaryLocation W30395836631 @default.
- W3039583663 hasRelatedWork W1598967542 @default.
- W3039583663 hasRelatedWork W1976791901 @default.
- W3039583663 hasRelatedWork W2005453055 @default.
- W3039583663 hasRelatedWork W2044347326 @default.
- W3039583663 hasRelatedWork W2140127426 @default.
- W3039583663 hasRelatedWork W2369038928 @default.
- W3039583663 hasRelatedWork W3143116751 @default.
- W3039583663 hasRelatedWork W3144508724 @default.
- W3039583663 hasRelatedWork W3146788304 @default.
- W3039583663 hasRelatedWork W4328110956 @default.
- W3039583663 hasVolume "125" @default.
- W3039583663 isParatext "false" @default.
- W3039583663 isRetracted "false" @default.
- W3039583663 magId "3039583663" @default.
- W3039583663 workType "article" @default.