Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039593163> ?p ?o ?g. }
- W3039593163 endingPage "4912" @default.
- W3039593163 startingPage "4912" @default.
- W3039593163 abstract "Elements in mining extracts can be potentially toxic if they are incorporated into soils, sediments or biota. Numerous approaches have been used to assess this problem, and these include sequential extractions and selective extractions. These two methods have limitations and advantages, and their combined use usually provides a rough estimate of the availability or (bio)availability of potentially toxic elements and, therefore, of their real potential as toxicants in food chains. These indirect speciation data are interesting in absolute terms, but in the work described here, this aspect was developed further by assessing the evolution of availability-related speciation in relation to the transport processes from the emission source, which are mainly fluvial- and wind-driven. This objective was achieved by characterizing tailings samples as the source of elements in soils and sediments at increasing distances to investigate the evolution of certain elements. The standard procedures employed included a sequential five-step extraction and a selective extraction with ammonium acetate. The results show that the highest percentages of Zn and Pb in tailings, soils and sediment samples are associated with oxyhydroxides, along with a significant presence of resistant mineralogical forms. In the case of Cd, its association with organic matter is the second-most important trapping mechanism in the area. The physicochemical mechanisms of transport did not transform the main mineralogical associations (oxyhydroxides and resistant mineralogical forms) along the transects, but they produced a chaotic evolution pattern for the other minor matrix associations for Zn and a decrease in exchangeable and carbonate-bound forms for Pb in soils. Interestingly, in sediments, these mobile forms showed a decrease in Zn and a chaotic evolution for Pb. The most probable reason for these observations is that Zn2+ can form smithsonite (ZnCO3) or hydrozincite (Zn5(CO3)2(OH)6), which explains the retention of a carbonate-bound form for Zn in the soil transect. In contrast, Pb and Cd can appear as different mineral phases. The order of (bio)availability was Pb > Zn > Cd in tailings but Cd > Pb > Zn in soils. The physicochemical processes involved in transport from tailings to soils produce an increase in Cd (bio)availability. The trend is a decrease in bioavailability on moving away from the source (tailings), with maximum values obtained for Cd near to the source area (200–400 m)." @default.
- W3039593163 created "2020-07-10" @default.
- W3039593163 creator A5029304848 @default.
- W3039593163 creator A5029921536 @default.
- W3039593163 creator A5040617221 @default.
- W3039593163 creator A5042534769 @default.
- W3039593163 creator A5062375501 @default.
- W3039593163 creator A5072097790 @default.
- W3039593163 creator A5076511214 @default.
- W3039593163 creator A5080361616 @default.
- W3039593163 creator A5082498666 @default.
- W3039593163 date "2020-07-08" @default.
- W3039593163 modified "2023-10-17" @default.
- W3039593163 title "Evolution of the Speciation and Mobility of Pb, Zn and Cd in Relation to Transport Processes in a Mining Environment" @default.
- W3039593163 cites W1518656649 @default.
- W3039593163 cites W1964279456 @default.
- W3039593163 cites W1975328535 @default.
- W3039593163 cites W1978763427 @default.
- W3039593163 cites W1978820384 @default.
- W3039593163 cites W1990805140 @default.
- W3039593163 cites W1993631654 @default.
- W3039593163 cites W1994301730 @default.
- W3039593163 cites W1994336062 @default.
- W3039593163 cites W2000834561 @default.
- W3039593163 cites W2001290672 @default.
- W3039593163 cites W2002096556 @default.
- W3039593163 cites W2014481767 @default.
- W3039593163 cites W2015405372 @default.
- W3039593163 cites W2019274726 @default.
- W3039593163 cites W2042894272 @default.
- W3039593163 cites W2044244094 @default.
- W3039593163 cites W2045245236 @default.
- W3039593163 cites W2052185442 @default.
- W3039593163 cites W2052393515 @default.
- W3039593163 cites W2055318590 @default.
- W3039593163 cites W2069303324 @default.
- W3039593163 cites W2073338251 @default.
- W3039593163 cites W2080651000 @default.
- W3039593163 cites W2083224321 @default.
- W3039593163 cites W2086375200 @default.
- W3039593163 cites W2086824008 @default.
- W3039593163 cites W2087590848 @default.
- W3039593163 cites W2088663252 @default.
- W3039593163 cites W2090345409 @default.
- W3039593163 cites W2092033068 @default.
- W3039593163 cites W2095382153 @default.
- W3039593163 cites W2102474260 @default.
- W3039593163 cites W2146526093 @default.
- W3039593163 cites W2192784948 @default.
- W3039593163 cites W2289519730 @default.
- W3039593163 cites W2395777601 @default.
- W3039593163 cites W2477966716 @default.
- W3039593163 cites W2493048158 @default.
- W3039593163 cites W266695354 @default.
- W3039593163 cites W2897784844 @default.
- W3039593163 cites W2933722689 @default.
- W3039593163 cites W2952574877 @default.
- W3039593163 cites W2957729375 @default.
- W3039593163 cites W2966124377 @default.
- W3039593163 cites W2972426827 @default.
- W3039593163 cites W2978948612 @default.
- W3039593163 cites W3003515637 @default.
- W3039593163 cites W3012303658 @default.
- W3039593163 cites W3013131121 @default.
- W3039593163 cites W3025260665 @default.
- W3039593163 doi "https://doi.org/10.3390/ijerph17144912" @default.
- W3039593163 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7400175" @default.
- W3039593163 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32650360" @default.
- W3039593163 hasPublicationYear "2020" @default.
- W3039593163 type Work @default.
- W3039593163 sameAs 3039593163 @default.
- W3039593163 citedByCount "10" @default.
- W3039593163 countsByYear W30395931632021 @default.
- W3039593163 countsByYear W30395931632022 @default.
- W3039593163 countsByYear W30395931632023 @default.
- W3039593163 crossrefType "journal-article" @default.
- W3039593163 hasAuthorship W3039593163A5029304848 @default.
- W3039593163 hasAuthorship W3039593163A5029921536 @default.
- W3039593163 hasAuthorship W3039593163A5040617221 @default.
- W3039593163 hasAuthorship W3039593163A5042534769 @default.
- W3039593163 hasAuthorship W3039593163A5062375501 @default.
- W3039593163 hasAuthorship W3039593163A5072097790 @default.
- W3039593163 hasAuthorship W3039593163A5076511214 @default.
- W3039593163 hasAuthorship W3039593163A5080361616 @default.
- W3039593163 hasAuthorship W3039593163A5082498666 @default.
- W3039593163 hasBestOaLocation W30395931631 @default.
- W3039593163 hasConcept C107872376 @default.
- W3039593163 hasConcept C111368507 @default.
- W3039593163 hasConcept C127313418 @default.
- W3039593163 hasConcept C147789679 @default.
- W3039593163 hasConcept C151730666 @default.
- W3039593163 hasConcept C159390177 @default.
- W3039593163 hasConcept C159750122 @default.
- W3039593163 hasConcept C178790620 @default.
- W3039593163 hasConcept C185592680 @default.
- W3039593163 hasConcept C18903297 @default.
- W3039593163 hasConcept C2776838516 @default.
- W3039593163 hasConcept C2780659211 @default.