Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039625131> ?p ?o ?g. }
- W3039625131 endingPage "124" @default.
- W3039625131 startingPage "91" @default.
- W3039625131 abstract "The heterostructured materials from different semiconductors play a crucial role in semiconductor industry and widely used as building block for electronic and optoelectronic devices. A heterojunction can be made by interfacing two different semiconductors where the electronic band structure near the interface will change according to electrostatics. The semiconductor heterojunctions have been widely used in solid state devices like solar cell, light emitting diode (LED), photo detector, and semiconductor laser. Two-dimensional nanomaterials (2DNMs), typically derived from bulk phase of layered structured materials, have rapidly engrossed as promising materials due to their intriguing physicochemical properties like unique optical band gap structure, good semiconducting ability, extremely strong light–matter interactions, high mechanical strength, and high surface area. Therefore these materials show wide range of potential applications like chemical sensor, biosensor, batteries, supercapacitors, electronic, and optoelectronic devices. With tremendous progress in the discovery and isolation of 2D materials, there exists a wide library of 2DNMs which includes graphene, silicene, germanene, layered transition metal oxides, phosphorene, hexagonal boron nitride (h-BN), graphitic carbon nitride (g-C3N4), layered double hydroxides, transition metal halides, and transition metal chalcogenides. However, one of the main challenges with the 2D materials is their easy restacking possibility resulting from strong interlayer interactions and high surface energy and thereby decreases available active sites. Whereas, there is an urgent need for new and scalable strategies to control the doping and improve the chemical stability of the 2D semiconductors before realizing their promising and fascinating applications. To overcome the above mentioned challenges, 2D materials (2DMs) are functionalized with small molecules, metal nanoparticles, ionic liquids, self-assembled monolayers, and polymers. The advantages of polymers over other functionalization include wide processability in organic solvent or water, ability of patterning using photolithographic techniques. Therefore the hybridization of 2DMs with polymer is one of the elegant approaches to generate new heterostructures with new functionality that can overcome the disadvantages of individual components and boost the activities of both with effectively upgraded properties. There are mainly two approaches (1) covalent and (2) noncovalent methods for interfacing or attaching the polymer on the 2D surface to generate novel polymer/2DM nanoheterostructured materials. Conjugated polymers (CPs) which have delocalized unsaturated π backbone is considered as organic semiconductor in their undoped state and studied enormously for organic electronic, optoelectronic device and supercapacitor applications. Besides good solubility and intrinsic electronic and optoelectronic features of CPs, theoretical molecular dynamics studies reveal that the strength of π-π interactions between conjugated block and 2DM like graphene surface is much stronger and can effectively tailor the band gap of 2DMs. By tuning the intrinsic electronic properties of both 2D semiconductor and CPs attached to 2D surface, it is expected to control the carrier properties at the heterojunctions that lead to generation of new hybrid materials with fascinating and exciting properties. In principle, these heterostructured materials can combine the advantages of 2DMs with that of CPs and provide platform for different applications like electronic devices, sensor, and energy storage. In this chapter, we will focus on the recent advances on synthesis of CP/2DM heterostructures and their applications. Different types of CPs including poly(thiophene)s (PTs) and poly(3-hexylthiophene) (P3HT), polyaniline (PANI), polypyrroles (PPys) were widely used to make hybrid materials with 2DMs through noncovalent π-π interaction. Whereas, CPs with suitable end-functionalized reactive groups were covalently attached with 2DM surface to form heterostructured materials based on CP and 2DNMs." @default.
- W3039625131 created "2020-07-10" @default.
- W3039625131 creator A5035017437 @default.
- W3039625131 date "2020-01-01" @default.
- W3039625131 modified "2023-10-18" @default.
- W3039625131 title "Nanoheterostructured materials based on conjugated polymer and two-dimensional materials: synthesis and applications" @default.
- W3039625131 cites W1506408666 @default.
- W3039625131 cites W1716202535 @default.
- W3039625131 cites W1963618228 @default.
- W3039625131 cites W1965851393 @default.
- W3039625131 cites W1967722764 @default.
- W3039625131 cites W1970720213 @default.
- W3039625131 cites W1973563516 @default.
- W3039625131 cites W1975292363 @default.
- W3039625131 cites W1978478508 @default.
- W3039625131 cites W1979807562 @default.
- W3039625131 cites W1980477536 @default.
- W3039625131 cites W1980819507 @default.
- W3039625131 cites W1981239532 @default.
- W3039625131 cites W1981587003 @default.
- W3039625131 cites W1985696055 @default.
- W3039625131 cites W1989520666 @default.
- W3039625131 cites W1992294045 @default.
- W3039625131 cites W1994699877 @default.
- W3039625131 cites W2000343111 @default.
- W3039625131 cites W2000451967 @default.
- W3039625131 cites W2001351221 @default.
- W3039625131 cites W2006783674 @default.
- W3039625131 cites W2006891910 @default.
- W3039625131 cites W2008272482 @default.
- W3039625131 cites W2008284369 @default.
- W3039625131 cites W2012943380 @default.
- W3039625131 cites W2014407961 @default.
- W3039625131 cites W2014442686 @default.
- W3039625131 cites W2014713696 @default.
- W3039625131 cites W2014778984 @default.
- W3039625131 cites W2015623922 @default.
- W3039625131 cites W2021605602 @default.
- W3039625131 cites W2022506474 @default.
- W3039625131 cites W2024966938 @default.
- W3039625131 cites W2026133638 @default.
- W3039625131 cites W2027279289 @default.
- W3039625131 cites W2027826302 @default.
- W3039625131 cites W2028957948 @default.
- W3039625131 cites W2030976149 @default.
- W3039625131 cites W2033468354 @default.
- W3039625131 cites W2036546354 @default.
- W3039625131 cites W2036608370 @default.
- W3039625131 cites W2038882229 @default.
- W3039625131 cites W2041586794 @default.
- W3039625131 cites W2042087808 @default.
- W3039625131 cites W2044456967 @default.
- W3039625131 cites W2050035908 @default.
- W3039625131 cites W2054751900 @default.
- W3039625131 cites W2056865455 @default.
- W3039625131 cites W2057134603 @default.
- W3039625131 cites W2057706555 @default.
- W3039625131 cites W2061331971 @default.
- W3039625131 cites W2062241577 @default.
- W3039625131 cites W2064582684 @default.
- W3039625131 cites W2067403984 @default.
- W3039625131 cites W2067925775 @default.
- W3039625131 cites W2068190290 @default.
- W3039625131 cites W2070183780 @default.
- W3039625131 cites W2077039392 @default.
- W3039625131 cites W2077758059 @default.
- W3039625131 cites W2079138239 @default.
- W3039625131 cites W2079576055 @default.
- W3039625131 cites W2084491161 @default.
- W3039625131 cites W2085364034 @default.
- W3039625131 cites W2085794415 @default.
- W3039625131 cites W2087234510 @default.
- W3039625131 cites W2090997613 @default.
- W3039625131 cites W2094519753 @default.
- W3039625131 cites W2094919124 @default.
- W3039625131 cites W2096451602 @default.
- W3039625131 cites W2109807803 @default.
- W3039625131 cites W2111287508 @default.
- W3039625131 cites W2111529307 @default.
- W3039625131 cites W2112116868 @default.
- W3039625131 cites W2119563229 @default.
- W3039625131 cites W2133747091 @default.
- W3039625131 cites W2136057222 @default.
- W3039625131 cites W2139885564 @default.
- W3039625131 cites W2140763054 @default.
- W3039625131 cites W2144335134 @default.
- W3039625131 cites W2144854567 @default.
- W3039625131 cites W2145916608 @default.
- W3039625131 cites W2146058735 @default.
- W3039625131 cites W2149274779 @default.
- W3039625131 cites W2150073008 @default.
- W3039625131 cites W2151254709 @default.
- W3039625131 cites W2157037094 @default.
- W3039625131 cites W2170237305 @default.
- W3039625131 cites W2182036471 @default.
- W3039625131 cites W2202226246 @default.
- W3039625131 cites W2237250883 @default.
- W3039625131 cites W2265433272 @default.