Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039632007> ?p ?o ?g. }
- W3039632007 abstract "Nonlinear dynamics and chaos theory are being widely used nowadays in neuroscience to characterize complex systems within which the change of the output isn’t proportional to the change of the input. Nonlinear systems compared to linear systems, often appear chaotic, unpredictable, or counterintuitive, and yet their behaviour isn’t random. The importance of the time series analysis, which exhibits a typical complex dynamics, within the area of nonlinear analysis can’t be undermined. Hidden important dynamical properties of the physiological phenomenon can be detected by many features of these approaches. Nonlinear dynamics and chaos theory are being employed in neurophysiology with the aim to elucidate the complex brain activity from electroencephalographic (EEG) signals. The brain is a chaotic dynamical system and further, their generated EEG signals are generally chaotic in another sense, because, with respect to time, the amplitude changes continuously. A reliable and non-invasive measurement of memory load which will be made continuously while performing a cognitive task would be very helpful for assessing cognitive function, crucial for the prevention of decision-making errors, and also the development of adaptive user interfaces. Such a measurement could help to keep up the efficiency and productivity in task completion, work performance, and to avoid cognitive overload, especially in critical/high mental load workplaces like traffic control, military operations, and rescue commands. We have measured the linear and nonlinear dynamics of the EEG signals in subjects undergoing mental arithmetic task and measured the cognitive load on the brain continuously. We have also differentiated the subjects who can perform a mental task good and bad and developed a system using support vector machine to differentiate rest and task states." @default.
- W3039632007 created "2020-07-10" @default.
- W3039632007 creator A5028869510 @default.
- W3039632007 creator A5032647559 @default.
- W3039632007 creator A5048455820 @default.
- W3039632007 creator A5088262937 @default.
- W3039632007 date "2020-07-02" @default.
- W3039632007 modified "2023-10-15" @default.
- W3039632007 title "Discriminating cognitive performance using biomarkers extracted from linear and nonlinear analysis of EEG signals by machine learning" @default.
- W3039632007 cites W1590569063 @default.
- W3039632007 cites W1862394037 @default.
- W3039632007 cites W1978854328 @default.
- W3039632007 cites W1985197632 @default.
- W3039632007 cites W1998657013 @default.
- W3039632007 cites W2001943445 @default.
- W3039632007 cites W2025210939 @default.
- W3039632007 cites W2029517603 @default.
- W3039632007 cites W2042750428 @default.
- W3039632007 cites W2064263898 @default.
- W3039632007 cites W2077880440 @default.
- W3039632007 cites W2079238806 @default.
- W3039632007 cites W2080375938 @default.
- W3039632007 cites W2081811286 @default.
- W3039632007 cites W2085671084 @default.
- W3039632007 cites W2089299141 @default.
- W3039632007 cites W2096036274 @default.
- W3039632007 cites W2098330912 @default.
- W3039632007 cites W2098914003 @default.
- W3039632007 cites W2100254477 @default.
- W3039632007 cites W2106822551 @default.
- W3039632007 cites W2109353679 @default.
- W3039632007 cites W2128495200 @default.
- W3039632007 cites W2140591843 @default.
- W3039632007 cites W2159472025 @default.
- W3039632007 cites W2162800060 @default.
- W3039632007 cites W2164104048 @default.
- W3039632007 cites W2171707680 @default.
- W3039632007 cites W2273310283 @default.
- W3039632007 cites W2326159140 @default.
- W3039632007 cites W2419446408 @default.
- W3039632007 cites W2591818083 @default.
- W3039632007 cites W2741351499 @default.
- W3039632007 cites W2782404771 @default.
- W3039632007 cites W2910134385 @default.
- W3039632007 cites W2991453104 @default.
- W3039632007 cites W3023481128 @default.
- W3039632007 cites W4237990368 @default.
- W3039632007 doi "https://doi.org/10.1101/2020.06.30.20143610" @default.
- W3039632007 hasPublicationYear "2020" @default.
- W3039632007 type Work @default.
- W3039632007 sameAs 3039632007 @default.
- W3039632007 citedByCount "2" @default.
- W3039632007 countsByYear W30396320072021 @default.
- W3039632007 countsByYear W30396320072022 @default.
- W3039632007 crossrefType "posted-content" @default.
- W3039632007 hasAuthorship W3039632007A5028869510 @default.
- W3039632007 hasAuthorship W3039632007A5032647559 @default.
- W3039632007 hasAuthorship W3039632007A5048455820 @default.
- W3039632007 hasAuthorship W3039632007A5088262937 @default.
- W3039632007 hasBestOaLocation W30396320071 @default.
- W3039632007 hasConcept C119653847 @default.
- W3039632007 hasConcept C121332964 @default.
- W3039632007 hasConcept C127413603 @default.
- W3039632007 hasConcept C152478114 @default.
- W3039632007 hasConcept C154945302 @default.
- W3039632007 hasConcept C15744967 @default.
- W3039632007 hasConcept C158622935 @default.
- W3039632007 hasConcept C169760540 @default.
- W3039632007 hasConcept C169900460 @default.
- W3039632007 hasConcept C201995342 @default.
- W3039632007 hasConcept C2775924081 @default.
- W3039632007 hasConcept C2777052490 @default.
- W3039632007 hasConcept C2780451532 @default.
- W3039632007 hasConcept C41008148 @default.
- W3039632007 hasConcept C47446073 @default.
- W3039632007 hasConcept C522805319 @default.
- W3039632007 hasConcept C61641136 @default.
- W3039632007 hasConcept C62520636 @default.
- W3039632007 hasConcept C79379906 @default.
- W3039632007 hasConcept C92866567 @default.
- W3039632007 hasConceptScore W3039632007C119653847 @default.
- W3039632007 hasConceptScore W3039632007C121332964 @default.
- W3039632007 hasConceptScore W3039632007C127413603 @default.
- W3039632007 hasConceptScore W3039632007C152478114 @default.
- W3039632007 hasConceptScore W3039632007C154945302 @default.
- W3039632007 hasConceptScore W3039632007C15744967 @default.
- W3039632007 hasConceptScore W3039632007C158622935 @default.
- W3039632007 hasConceptScore W3039632007C169760540 @default.
- W3039632007 hasConceptScore W3039632007C169900460 @default.
- W3039632007 hasConceptScore W3039632007C201995342 @default.
- W3039632007 hasConceptScore W3039632007C2775924081 @default.
- W3039632007 hasConceptScore W3039632007C2777052490 @default.
- W3039632007 hasConceptScore W3039632007C2780451532 @default.
- W3039632007 hasConceptScore W3039632007C41008148 @default.
- W3039632007 hasConceptScore W3039632007C47446073 @default.
- W3039632007 hasConceptScore W3039632007C522805319 @default.
- W3039632007 hasConceptScore W3039632007C61641136 @default.
- W3039632007 hasConceptScore W3039632007C62520636 @default.
- W3039632007 hasConceptScore W3039632007C79379906 @default.
- W3039632007 hasConceptScore W3039632007C92866567 @default.