Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039684974> ?p ?o ?g. }
- W3039684974 abstract "An intrusion detection system (IDS) works as an alarm mechanism for computer systems. It detects any malicious activity that happened to the computer system and it alerts an alarm message to notify the user there is malicious activity. There are IDS that are able to take action when malicious or anomalous networks are detected, which include suspending the traffic sent from suspicious IP addresses. The problem statement for this project is to find out the most accurate machine learning algorithm and the types of IDS with different placement strategies. When it comes to the deployment of a wireless network, IDS is not as easy a task as deploying a traditional network IDS. There are many unexpected complexities of the problem of reliable intrusion detection in a wireless network. The motivation of this research is to find the most suitable classification techniques that are able to increase the accuracy of an IDS. Machine learning is useful for the upcoming trend; it provides better accuracy in the detection of malicious traffic." @default.
- W3039684974 created "2020-07-10" @default.
- W3039684974 creator A5037910437 @default.
- W3039684974 creator A5041935786 @default.
- W3039684974 creator A5050132742 @default.
- W3039684974 creator A5080969458 @default.
- W3039684974 creator A5082051596 @default.
- W3039684974 date "2020-01-01" @default.
- W3039684974 modified "2023-09-26" @default.
- W3039684974 title "A Survey on Intrusion Detection in Wired and Wireless Network for Future IoT Deployment" @default.
- W3039684974 cites W1548644355 @default.
- W3039684974 cites W1968816417 @default.
- W3039684974 cites W1976262362 @default.
- W3039684974 cites W1993813186 @default.
- W3039684974 cites W2008125527 @default.
- W3039684974 cites W2038571938 @default.
- W3039684974 cites W2046255282 @default.
- W3039684974 cites W2104927807 @default.
- W3039684974 cites W2105442001 @default.
- W3039684974 cites W2167240430 @default.
- W3039684974 cites W2281874374 @default.
- W3039684974 cites W2306698359 @default.
- W3039684974 cites W2342408547 @default.
- W3039684974 cites W2490967029 @default.
- W3039684974 cites W2515829045 @default.
- W3039684974 cites W2547004540 @default.
- W3039684974 cites W2548409765 @default.
- W3039684974 cites W2548647095 @default.
- W3039684974 cites W2576364334 @default.
- W3039684974 cites W2611338987 @default.
- W3039684974 cites W2613480438 @default.
- W3039684974 cites W2752291283 @default.
- W3039684974 cites W2753486258 @default.
- W3039684974 cites W2757758197 @default.
- W3039684974 cites W2762323146 @default.
- W3039684974 cites W2776676105 @default.
- W3039684974 cites W2784592234 @default.
- W3039684974 cites W2886128149 @default.
- W3039684974 cites W2902106343 @default.
- W3039684974 cites W2910337979 @default.
- W3039684974 cites W2930428186 @default.
- W3039684974 cites W2964248614 @default.
- W3039684974 cites W2978751771 @default.
- W3039684974 cites W2996782209 @default.
- W3039684974 cites W2997247512 @default.
- W3039684974 cites W2997258927 @default.
- W3039684974 cites W2998612923 @default.
- W3039684974 cites W3104092367 @default.
- W3039684974 doi "https://doi.org/10.4018/978-1-7998-2803-7.ch007" @default.
- W3039684974 hasPublicationYear "2020" @default.
- W3039684974 type Work @default.
- W3039684974 sameAs 3039684974 @default.
- W3039684974 citedByCount "0" @default.
- W3039684974 crossrefType "book-chapter" @default.
- W3039684974 hasAuthorship W3039684974A5037910437 @default.
- W3039684974 hasAuthorship W3039684974A5041935786 @default.
- W3039684974 hasAuthorship W3039684974A5050132742 @default.
- W3039684974 hasAuthorship W3039684974A5080969458 @default.
- W3039684974 hasAuthorship W3039684974A5082051596 @default.
- W3039684974 hasConcept C105339364 @default.
- W3039684974 hasConcept C108037233 @default.
- W3039684974 hasConcept C111919701 @default.
- W3039684974 hasConcept C127413603 @default.
- W3039684974 hasConcept C146978453 @default.
- W3039684974 hasConcept C154945302 @default.
- W3039684974 hasConcept C201995342 @default.
- W3039684974 hasConcept C27061796 @default.
- W3039684974 hasConcept C2776836416 @default.
- W3039684974 hasConcept C2779119184 @default.
- W3039684974 hasConcept C2780451532 @default.
- W3039684974 hasConcept C31258907 @default.
- W3039684974 hasConcept C35525427 @default.
- W3039684974 hasConcept C38652104 @default.
- W3039684974 hasConcept C41008148 @default.
- W3039684974 hasConcept C555944384 @default.
- W3039684974 hasConcept C76155785 @default.
- W3039684974 hasConceptScore W3039684974C105339364 @default.
- W3039684974 hasConceptScore W3039684974C108037233 @default.
- W3039684974 hasConceptScore W3039684974C111919701 @default.
- W3039684974 hasConceptScore W3039684974C127413603 @default.
- W3039684974 hasConceptScore W3039684974C146978453 @default.
- W3039684974 hasConceptScore W3039684974C154945302 @default.
- W3039684974 hasConceptScore W3039684974C201995342 @default.
- W3039684974 hasConceptScore W3039684974C27061796 @default.
- W3039684974 hasConceptScore W3039684974C2776836416 @default.
- W3039684974 hasConceptScore W3039684974C2779119184 @default.
- W3039684974 hasConceptScore W3039684974C2780451532 @default.
- W3039684974 hasConceptScore W3039684974C31258907 @default.
- W3039684974 hasConceptScore W3039684974C35525427 @default.
- W3039684974 hasConceptScore W3039684974C38652104 @default.
- W3039684974 hasConceptScore W3039684974C41008148 @default.
- W3039684974 hasConceptScore W3039684974C555944384 @default.
- W3039684974 hasConceptScore W3039684974C76155785 @default.
- W3039684974 hasLocation W30396849741 @default.
- W3039684974 hasOpenAccess W3039684974 @default.
- W3039684974 hasPrimaryLocation W30396849741 @default.
- W3039684974 hasRelatedWork W12124793 @default.
- W3039684974 hasRelatedWork W1557031 @default.
- W3039684974 hasRelatedWork W2810648 @default.
- W3039684974 hasRelatedWork W3073688 @default.