Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039744314> ?p ?o ?g. }
- W3039744314 endingPage "2666" @default.
- W3039744314 startingPage "2645" @default.
- W3039744314 abstract "Abstract Deep learning has transformed the field of data analysis by dramatically improving the state of the art in various classification and prediction tasks, especially in the area of computer vision. In biomedical engineering, a lot of new work is directed toward surface electromyography (sEMG)-based gesture recognition, often addressed as an image classification problem using convolutional neural networks (CNNs). In this paper, we utilize the Hilbert space-filling curve for the generation of image representations of sEMG signals, which allows the application of typical image processing pipelines such as CNNs on sequence data. The proposed method is evaluated on different state-of-the-art network architectures and yields a significant classification improvement over the approach without the Hilbert curve. Additionally, we develop a new network architecture (MSHilbNet) that takes advantage of multiple scales of an initial Hilbert curve representation and achieves equal performance with fewer convolutional layers." @default.
- W3039744314 created "2020-07-10" @default.
- W3039744314 creator A5009555116 @default.
- W3039744314 creator A5048675559 @default.
- W3039744314 creator A5058747795 @default.
- W3039744314 creator A5059882142 @default.
- W3039744314 creator A5082353082 @default.
- W3039744314 date "2020-07-07" @default.
- W3039744314 modified "2023-10-18" @default.
- W3039744314 title "Hilbert sEMG data scanning for hand gesture recognition based on deep learning" @default.
- W3039744314 cites W1977995219 @default.
- W3039744314 cites W2019889305 @default.
- W3039744314 cites W2020243185 @default.
- W3039744314 cites W2021320602 @default.
- W3039744314 cites W2037967616 @default.
- W3039744314 cites W2041345816 @default.
- W3039744314 cites W2066327120 @default.
- W3039744314 cites W2080596365 @default.
- W3039744314 cites W2123167643 @default.
- W3039744314 cites W2129566274 @default.
- W3039744314 cites W2137502844 @default.
- W3039744314 cites W2148268262 @default.
- W3039744314 cites W2159772324 @default.
- W3039744314 cites W2165619603 @default.
- W3039744314 cites W2167262695 @default.
- W3039744314 cites W2167582671 @default.
- W3039744314 cites W2169931829 @default.
- W3039744314 cites W2171188488 @default.
- W3039744314 cites W2292475108 @default.
- W3039744314 cites W2342619534 @default.
- W3039744314 cites W2516710120 @default.
- W3039744314 cites W2555541061 @default.
- W3039744314 cites W2563604890 @default.
- W3039744314 cites W2586953456 @default.
- W3039744314 cites W2589747988 @default.
- W3039744314 cites W2594228112 @default.
- W3039744314 cites W2735762883 @default.
- W3039744314 cites W2743239999 @default.
- W3039744314 cites W2775447708 @default.
- W3039744314 cites W2795244616 @default.
- W3039744314 cites W2886903801 @default.
- W3039744314 cites W2894196902 @default.
- W3039744314 cites W2898716605 @default.
- W3039744314 cites W2899214097 @default.
- W3039744314 cites W2911605501 @default.
- W3039744314 cites W2912302853 @default.
- W3039744314 cites W2941257018 @default.
- W3039744314 cites W2952315395 @default.
- W3039744314 cites W2954513135 @default.
- W3039744314 cites W2962879438 @default.
- W3039744314 cites W2963446712 @default.
- W3039744314 cites W2965087489 @default.
- W3039744314 cites W3101667008 @default.
- W3039744314 cites W3106076745 @default.
- W3039744314 doi "https://doi.org/10.1007/s00521-020-05128-7" @default.
- W3039744314 hasPublicationYear "2020" @default.
- W3039744314 type Work @default.
- W3039744314 sameAs 3039744314 @default.
- W3039744314 citedByCount "12" @default.
- W3039744314 countsByYear W30397443142021 @default.
- W3039744314 countsByYear W30397443142022 @default.
- W3039744314 countsByYear W30397443142023 @default.
- W3039744314 crossrefType "journal-article" @default.
- W3039744314 hasAuthorship W3039744314A5009555116 @default.
- W3039744314 hasAuthorship W3039744314A5048675559 @default.
- W3039744314 hasAuthorship W3039744314A5058747795 @default.
- W3039744314 hasAuthorship W3039744314A5059882142 @default.
- W3039744314 hasAuthorship W3039744314A5082353082 @default.
- W3039744314 hasBestOaLocation W30397443141 @default.
- W3039744314 hasConcept C108583219 @default.
- W3039744314 hasConcept C11413529 @default.
- W3039744314 hasConcept C153180895 @default.
- W3039744314 hasConcept C154945302 @default.
- W3039744314 hasConcept C159437735 @default.
- W3039744314 hasConcept C17744445 @default.
- W3039744314 hasConcept C199539241 @default.
- W3039744314 hasConcept C207347870 @default.
- W3039744314 hasConcept C2776359362 @default.
- W3039744314 hasConcept C2781142347 @default.
- W3039744314 hasConcept C41008148 @default.
- W3039744314 hasConcept C81363708 @default.
- W3039744314 hasConcept C94625758 @default.
- W3039744314 hasConceptScore W3039744314C108583219 @default.
- W3039744314 hasConceptScore W3039744314C11413529 @default.
- W3039744314 hasConceptScore W3039744314C153180895 @default.
- W3039744314 hasConceptScore W3039744314C154945302 @default.
- W3039744314 hasConceptScore W3039744314C159437735 @default.
- W3039744314 hasConceptScore W3039744314C17744445 @default.
- W3039744314 hasConceptScore W3039744314C199539241 @default.
- W3039744314 hasConceptScore W3039744314C207347870 @default.
- W3039744314 hasConceptScore W3039744314C2776359362 @default.
- W3039744314 hasConceptScore W3039744314C2781142347 @default.
- W3039744314 hasConceptScore W3039744314C41008148 @default.
- W3039744314 hasConceptScore W3039744314C81363708 @default.
- W3039744314 hasConceptScore W3039744314C94625758 @default.
- W3039744314 hasIssue "7" @default.
- W3039744314 hasLocation W30397443141 @default.
- W3039744314 hasLocation W30397443142 @default.