Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039796332> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3039796332 endingPage "100706" @default.
- W3039796332 startingPage "100706" @default.
- W3039796332 abstract "In the present case study, the thermal performance of fins for a novel axial finned-tube heat exchanger is investigated and predicted using machine learning regression technique. The effects of variation in the fin spacing, fin thickness, material, and the convective heat transfer coefficient on the overall efficiency and total effectiveness have been analyzed and commented upon. The k-Nearest Neighbor (k-NN), a machine learning algorithm, is used for regression analysis to predict the thermal performance outputs and the results showed high prediction accuracies. The k-NN algorithm is robust and precise which can be used by thermal system design engineers for predicting output variables. The temperature profiles of various geometries have been depicted and compared in the results. It was concluded that the efficiency is increasing with fin thickness & decreasing with fin spacing and the maximum efficiency ηmax=0.99975 is achieved at δ∗=0.1&t∗=0.0133 having h=5W/m2.K for copper material. The effectiveness is increasing with fin spacing & fin thickness and the maximum effectiveness εmax=122.766 is for δ∗=8&t∗=0.4 having h=5W/m2.K." @default.
- W3039796332 created "2020-07-10" @default.
- W3039796332 creator A5008937882 @default.
- W3039796332 creator A5053710483 @default.
- W3039796332 creator A5060175084 @default.
- W3039796332 date "2020-10-01" @default.
- W3039796332 modified "2023-10-14" @default.
- W3039796332 title "Numerical heat transfer analysis & predicting thermal performance of fins for a novel heat exchanger using machine learning" @default.
- W3039796332 cites W1978727282 @default.
- W3039796332 cites W1999356550 @default.
- W3039796332 cites W2021904598 @default.
- W3039796332 cites W2036360959 @default.
- W3039796332 cites W2083361428 @default.
- W3039796332 cites W2087168410 @default.
- W3039796332 cites W2135861369 @default.
- W3039796332 cites W2225013896 @default.
- W3039796332 cites W2969283312 @default.
- W3039796332 cites W3014446153 @default.
- W3039796332 doi "https://doi.org/10.1016/j.csite.2020.100706" @default.
- W3039796332 hasPublicationYear "2020" @default.
- W3039796332 type Work @default.
- W3039796332 sameAs 3039796332 @default.
- W3039796332 citedByCount "25" @default.
- W3039796332 countsByYear W30397963322020 @default.
- W3039796332 countsByYear W30397963322021 @default.
- W3039796332 countsByYear W30397963322022 @default.
- W3039796332 countsByYear W30397963322023 @default.
- W3039796332 crossrefType "journal-article" @default.
- W3039796332 hasAuthorship W3039796332A5008937882 @default.
- W3039796332 hasAuthorship W3039796332A5053710483 @default.
- W3039796332 hasAuthorship W3039796332A5060175084 @default.
- W3039796332 hasBestOaLocation W30397963321 @default.
- W3039796332 hasConcept C107706546 @default.
- W3039796332 hasConcept C10899652 @default.
- W3039796332 hasConcept C121332964 @default.
- W3039796332 hasConcept C159985019 @default.
- W3039796332 hasConcept C192562407 @default.
- W3039796332 hasConcept C204530211 @default.
- W3039796332 hasConcept C29700514 @default.
- W3039796332 hasConcept C41231900 @default.
- W3039796332 hasConcept C45753066 @default.
- W3039796332 hasConcept C50517652 @default.
- W3039796332 hasConcept C57879066 @default.
- W3039796332 hasConcept C91721477 @default.
- W3039796332 hasConcept C97355855 @default.
- W3039796332 hasConceptScore W3039796332C107706546 @default.
- W3039796332 hasConceptScore W3039796332C10899652 @default.
- W3039796332 hasConceptScore W3039796332C121332964 @default.
- W3039796332 hasConceptScore W3039796332C159985019 @default.
- W3039796332 hasConceptScore W3039796332C192562407 @default.
- W3039796332 hasConceptScore W3039796332C204530211 @default.
- W3039796332 hasConceptScore W3039796332C29700514 @default.
- W3039796332 hasConceptScore W3039796332C41231900 @default.
- W3039796332 hasConceptScore W3039796332C45753066 @default.
- W3039796332 hasConceptScore W3039796332C50517652 @default.
- W3039796332 hasConceptScore W3039796332C57879066 @default.
- W3039796332 hasConceptScore W3039796332C91721477 @default.
- W3039796332 hasConceptScore W3039796332C97355855 @default.
- W3039796332 hasLocation W30397963321 @default.
- W3039796332 hasOpenAccess W3039796332 @default.
- W3039796332 hasPrimaryLocation W30397963321 @default.
- W3039796332 hasRelatedWork W139611272 @default.
- W3039796332 hasRelatedWork W1484007416 @default.
- W3039796332 hasRelatedWork W2005889809 @default.
- W3039796332 hasRelatedWork W2017634983 @default.
- W3039796332 hasRelatedWork W2081453499 @default.
- W3039796332 hasRelatedWork W280161440 @default.
- W3039796332 hasRelatedWork W3155023655 @default.
- W3039796332 hasRelatedWork W898517100 @default.
- W3039796332 hasRelatedWork W2241293664 @default.
- W3039796332 hasRelatedWork W2496409068 @default.
- W3039796332 hasVolume "21" @default.
- W3039796332 isParatext "false" @default.
- W3039796332 isRetracted "false" @default.
- W3039796332 magId "3039796332" @default.
- W3039796332 workType "article" @default.