Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039856838> ?p ?o ?g. }
- W3039856838 endingPage "106605" @default.
- W3039856838 startingPage "106605" @default.
- W3039856838 abstract "In a flexible job-shop scheduling problem (FJSP), an operation can be assigned to one of a set of eligible machines. Therefore, the problem is to simultaneously determine both the assignment of operations to machines and their sequences. Accordingly, the solution encoding of many regular genetic algorithms (RGAs) developed in literature has two parts: one part encodes the assignment decision and the other the sequencing decision. The genetic search determines both the assignment and the sequencing of the operations simultaneously through a random process guided by the principles of natural selection and evolution. In this paper, we develop a two-stage genetic algorithm (2SGA) with the first stage being different from a typical RGA for FJSP found in the literature. The first stage of 2SGA has a solution encoding that only dictates the sequence in which the operations are considered for assignment. Whenever an operation is considered for assignment, the machine that can complete this operation the soonest is selected while taking into account the operations that are already assigned to this machine. The order in which the operations are assigned to machines determines their sequence. The second stage, starting from the solutions of the first stage, follows the common approach of genetic algorithm for FJSP to enable the algorithm to search the entire solution space by including solutions that might have been excluded because of the greedy nature of the first stage. We tested the proposed algorithm by solving many benchmark problems and several other large-size problems of a comprehensive FJSP model with sequence-dependent setup, machine release date, and lag-time. The performance of the proposed two-stage algorithm greatly exceeds that of the common approach of genetic algorithm for FJSP. We also show that further performance improvement of the proposed algorithm can be achieved using high-performance parallel computation. However, the more interesting result we found was that the sequential version of the proposed algorithm (using a single CPU) outperformed a parallel implementation of the regular genetic algorithm that uses many CPUs. We also noted that the superiority of the proposed algorithm over RGA is much greater when solving large-size problems, rendering the proposed algorithm as a viable choice for solving practical problems that are typically encountered in industries." @default.
- W3039856838 created "2020-07-10" @default.
- W3039856838 creator A5016122534 @default.
- W3039856838 creator A5032311556 @default.
- W3039856838 date "2020-09-01" @default.
- W3039856838 modified "2023-09-27" @default.
- W3039856838 title "An efficient two-stage genetic algorithm for a flexible job-shop scheduling problem with sequence dependent attached/detached setup, machine release date and lag-time" @default.
- W3039856838 cites W1147614125 @default.
- W3039856838 cites W137575789 @default.
- W3039856838 cites W1483455873 @default.
- W3039856838 cites W1500820894 @default.
- W3039856838 cites W1518612458 @default.
- W3039856838 cites W1588382077 @default.
- W3039856838 cites W1966030479 @default.
- W3039856838 cites W1969772048 @default.
- W3039856838 cites W1970176495 @default.
- W3039856838 cites W1973531016 @default.
- W3039856838 cites W1978733107 @default.
- W3039856838 cites W1985076124 @default.
- W3039856838 cites W1989908347 @default.
- W3039856838 cites W1990248249 @default.
- W3039856838 cites W1992679414 @default.
- W3039856838 cites W1992935927 @default.
- W3039856838 cites W2001873317 @default.
- W3039856838 cites W2004436468 @default.
- W3039856838 cites W2015636367 @default.
- W3039856838 cites W2027323609 @default.
- W3039856838 cites W2027507691 @default.
- W3039856838 cites W2032908671 @default.
- W3039856838 cites W2034848607 @default.
- W3039856838 cites W2045304977 @default.
- W3039856838 cites W2048490243 @default.
- W3039856838 cites W2053138114 @default.
- W3039856838 cites W2057285547 @default.
- W3039856838 cites W2063461301 @default.
- W3039856838 cites W2064661781 @default.
- W3039856838 cites W2074355122 @default.
- W3039856838 cites W2075112045 @default.
- W3039856838 cites W2076716919 @default.
- W3039856838 cites W2084993914 @default.
- W3039856838 cites W2086975611 @default.
- W3039856838 cites W2087753833 @default.
- W3039856838 cites W2088304441 @default.
- W3039856838 cites W2090896705 @default.
- W3039856838 cites W2092393087 @default.
- W3039856838 cites W2098650167 @default.
- W3039856838 cites W2099235707 @default.
- W3039856838 cites W2122736695 @default.
- W3039856838 cites W2125030380 @default.
- W3039856838 cites W2126074884 @default.
- W3039856838 cites W2145115017 @default.
- W3039856838 cites W2166900052 @default.
- W3039856838 cites W2167121878 @default.
- W3039856838 cites W2260286117 @default.
- W3039856838 cites W2321948413 @default.
- W3039856838 cites W2346812035 @default.
- W3039856838 cites W2608191974 @default.
- W3039856838 cites W2616713676 @default.
- W3039856838 cites W2734854649 @default.
- W3039856838 cites W2747561859 @default.
- W3039856838 cites W2791306173 @default.
- W3039856838 cites W2791336582 @default.
- W3039856838 cites W2892385368 @default.
- W3039856838 cites W2900116312 @default.
- W3039856838 cites W2901679457 @default.
- W3039856838 cites W2937599159 @default.
- W3039856838 cites W2945297803 @default.
- W3039856838 cites W2951307174 @default.
- W3039856838 cites W2952808052 @default.
- W3039856838 cites W2960293379 @default.
- W3039856838 cites W2964217031 @default.
- W3039856838 cites W2972443822 @default.
- W3039856838 cites W3002080847 @default.
- W3039856838 cites W3004492813 @default.
- W3039856838 cites W3008802634 @default.
- W3039856838 cites W3011707683 @default.
- W3039856838 cites W51304130 @default.
- W3039856838 doi "https://doi.org/10.1016/j.cie.2020.106605" @default.
- W3039856838 hasPublicationYear "2020" @default.
- W3039856838 type Work @default.
- W3039856838 sameAs 3039856838 @default.
- W3039856838 citedByCount "37" @default.
- W3039856838 countsByYear W30398568382020 @default.
- W3039856838 countsByYear W30398568382021 @default.
- W3039856838 countsByYear W30398568382022 @default.
- W3039856838 countsByYear W30398568382023 @default.
- W3039856838 crossrefType "journal-article" @default.
- W3039856838 hasAuthorship W3039856838A5016122534 @default.
- W3039856838 hasAuthorship W3039856838A5032311556 @default.
- W3039856838 hasConcept C111919701 @default.
- W3039856838 hasConcept C11413529 @default.
- W3039856838 hasConcept C126255220 @default.
- W3039856838 hasConcept C13280743 @default.
- W3039856838 hasConcept C154945302 @default.
- W3039856838 hasConcept C177264268 @default.
- W3039856838 hasConcept C185798385 @default.
- W3039856838 hasConcept C199360897 @default.
- W3039856838 hasConcept C205649164 @default.