Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039881978> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3039881978 abstract "Abstract Mobile edge computing (MEC) is a new technology that provides an IT service environment and cloud‐computing resource at the edge of the mobile network, aiming to improve the user experience by reducing latency and delivering highly efficient services. A mobile health care system is a typical case of MEC. Recent advances in mobile health technology enable us to automatically record the states and behaviors of patients in hospitals by identifying their faces. Instead of using a centralized server or cloud to process these heavy loading analyses, MEC analyzes the patients' behavior locally in their rooms to enable quick response to their accidents and reduce the storage size of large‐scale patient information. By using MEC, only one frontal face for each patient is available in the gallery to reduce the local computational power. Although a patient's face can be captured from any other pose, doing so challenges the face‐identification algorithm. Several studies have been published to solve this problem, but most of them rely on pose estimation and landmark detection. In this paper, we propose a deeper convolutional neural network to extract the pose‐invariant face features and synthesize the virtual poses simultaneously, aiming to develop a landmark‐free and pose‐estimation‐free frontal‐face synthesis system. The deeper network was divided into multiple overlapped local networks, each one trained to synthesize a small pose change, such as one larger than 45° to 30° . The local networks were jointly trained to synthesize the frontal face from a nonfrontal pose in a progressive manner. By stacking multiple local networks, we were able to extract more robust pose‐invariant features, to generate multiple virtual poses before the frontal face was synthesized. The pose‐invariant features and virtual poses were incorporated to identify the face across poses. The proposed method was evaluated on the CAS‐PEAL dataset with 16 layers and fine‐tuned on the FERET dataset with 12 layers. The experimental results showed our network achieved impressive performance for pose‐unconstrained face recognition, which can be applied for human identification in healthcare systems using MEC." @default.
- W3039881978 created "2020-07-10" @default.
- W3039881978 creator A5031101634 @default.
- W3039881978 creator A5087649907 @default.
- W3039881978 date "2020-06-29" @default.
- W3039881978 modified "2023-09-27" @default.
- W3039881978 title "Human identification in health care systems using mobile edge computing" @default.
- W3039881978 cites W1126102950 @default.
- W3039881978 cites W2007146377 @default.
- W3039881978 cites W2035379092 @default.
- W3039881978 cites W2080961759 @default.
- W3039881978 cites W2082020538 @default.
- W3039881978 cites W2082045173 @default.
- W3039881978 cites W2096027770 @default.
- W3039881978 cites W2151103935 @default.
- W3039881978 cites W2154211011 @default.
- W3039881978 cites W2155893237 @default.
- W3039881978 cites W2159786793 @default.
- W3039881978 cites W2160126058 @default.
- W3039881978 doi "https://doi.org/10.1002/ett.4031" @default.
- W3039881978 hasPublicationYear "2020" @default.
- W3039881978 type Work @default.
- W3039881978 sameAs 3039881978 @default.
- W3039881978 citedByCount "5" @default.
- W3039881978 countsByYear W30398819782022 @default.
- W3039881978 crossrefType "journal-article" @default.
- W3039881978 hasAuthorship W3039881978A5031101634 @default.
- W3039881978 hasAuthorship W3039881978A5087649907 @default.
- W3039881978 hasConcept C111919701 @default.
- W3039881978 hasConcept C116834253 @default.
- W3039881978 hasConcept C119857082 @default.
- W3039881978 hasConcept C120314980 @default.
- W3039881978 hasConcept C136764020 @default.
- W3039881978 hasConcept C138236772 @default.
- W3039881978 hasConcept C154945302 @default.
- W3039881978 hasConcept C162307627 @default.
- W3039881978 hasConcept C186967261 @default.
- W3039881978 hasConcept C2778456923 @default.
- W3039881978 hasConcept C2780297707 @default.
- W3039881978 hasConcept C41008148 @default.
- W3039881978 hasConcept C52102323 @default.
- W3039881978 hasConcept C59822182 @default.
- W3039881978 hasConcept C79974875 @default.
- W3039881978 hasConcept C81363708 @default.
- W3039881978 hasConcept C86803240 @default.
- W3039881978 hasConceptScore W3039881978C111919701 @default.
- W3039881978 hasConceptScore W3039881978C116834253 @default.
- W3039881978 hasConceptScore W3039881978C119857082 @default.
- W3039881978 hasConceptScore W3039881978C120314980 @default.
- W3039881978 hasConceptScore W3039881978C136764020 @default.
- W3039881978 hasConceptScore W3039881978C138236772 @default.
- W3039881978 hasConceptScore W3039881978C154945302 @default.
- W3039881978 hasConceptScore W3039881978C162307627 @default.
- W3039881978 hasConceptScore W3039881978C186967261 @default.
- W3039881978 hasConceptScore W3039881978C2778456923 @default.
- W3039881978 hasConceptScore W3039881978C2780297707 @default.
- W3039881978 hasConceptScore W3039881978C41008148 @default.
- W3039881978 hasConceptScore W3039881978C52102323 @default.
- W3039881978 hasConceptScore W3039881978C59822182 @default.
- W3039881978 hasConceptScore W3039881978C79974875 @default.
- W3039881978 hasConceptScore W3039881978C81363708 @default.
- W3039881978 hasConceptScore W3039881978C86803240 @default.
- W3039881978 hasIssue "12" @default.
- W3039881978 hasLocation W30398819781 @default.
- W3039881978 hasOpenAccess W3039881978 @default.
- W3039881978 hasPrimaryLocation W30398819781 @default.
- W3039881978 hasRelatedWork W2534668683 @default.
- W3039881978 hasRelatedWork W2942586735 @default.
- W3039881978 hasRelatedWork W3126507566 @default.
- W3039881978 hasRelatedWork W3211931762 @default.
- W3039881978 hasRelatedWork W4225757241 @default.
- W3039881978 hasRelatedWork W4229981831 @default.
- W3039881978 hasRelatedWork W4307482744 @default.
- W3039881978 hasRelatedWork W4375928818 @default.
- W3039881978 hasRelatedWork W4385414328 @default.
- W3039881978 hasRelatedWork W4385586765 @default.
- W3039881978 hasVolume "31" @default.
- W3039881978 isParatext "false" @default.
- W3039881978 isRetracted "false" @default.
- W3039881978 magId "3039881978" @default.
- W3039881978 workType "article" @default.