Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039883906> ?p ?o ?g. }
- W3039883906 endingPage "46" @default.
- W3039883906 startingPage "1" @default.
- W3039883906 abstract "Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions." @default.
- W3039883906 created "2020-07-10" @default.
- W3039883906 creator A5048183050 @default.
- W3039883906 creator A5059791335 @default.
- W3039883906 date "2020-07-05" @default.
- W3039883906 modified "2023-10-16" @default.
- W3039883906 title "A Survey of Unsupervised Deep Domain Adaptation" @default.
- W3039883906 cites W1722318740 @default.
- W3039883906 cites W1834627138 @default.
- W3039883906 cites W1920962657 @default.
- W3039883906 cites W1982696459 @default.
- W3039883906 cites W1986614398 @default.
- W3039883906 cites W2064675550 @default.
- W3039883906 cites W2065623022 @default.
- W3039883906 cites W2108598243 @default.
- W3039883906 cites W2117539524 @default.
- W3039883906 cites W2117876524 @default.
- W3039883906 cites W2155251704 @default.
- W3039883906 cites W2162363099 @default.
- W3039883906 cites W2163345210 @default.
- W3039883906 cites W2165698076 @default.
- W3039883906 cites W2183341477 @default.
- W3039883906 cites W2214409633 @default.
- W3039883906 cites W2312004824 @default.
- W3039883906 cites W2340897893 @default.
- W3039883906 cites W2395579298 @default.
- W3039883906 cites W2419507445 @default.
- W3039883906 cites W2478454054 @default.
- W3039883906 cites W2510867321 @default.
- W3039883906 cites W2557449848 @default.
- W3039883906 cites W2570431255 @default.
- W3039883906 cites W2584009249 @default.
- W3039883906 cites W2593414223 @default.
- W3039883906 cites W2593768305 @default.
- W3039883906 cites W2605488490 @default.
- W3039883906 cites W2607037079 @default.
- W3039883906 cites W2617027347 @default.
- W3039883906 cites W2739759330 @default.
- W3039883906 cites W2740718109 @default.
- W3039883906 cites W2760452458 @default.
- W3039883906 cites W2786808285 @default.
- W3039883906 cites W2793888044 @default.
- W3039883906 cites W2795889831 @default.
- W3039883906 cites W2798328860 @default.
- W3039883906 cites W2798681837 @default.
- W3039883906 cites W2798718722 @default.
- W3039883906 cites W2798951992 @default.
- W3039883906 cites W2798964604 @default.
- W3039883906 cites W2808401425 @default.
- W3039883906 cites W2887280559 @default.
- W3039883906 cites W2890374010 @default.
- W3039883906 cites W2891691791 @default.
- W3039883906 cites W2892946488 @default.
- W3039883906 cites W2894728917 @default.
- W3039883906 cites W2895168809 @default.
- W3039883906 cites W2895187988 @default.
- W3039883906 cites W2895281799 @default.
- W3039883906 cites W2898843852 @default.
- W3039883906 cites W2904549000 @default.
- W3039883906 cites W2904706552 @default.
- W3039883906 cites W2916321744 @default.
- W3039883906 cites W2949477454 @default.
- W3039883906 cites W2954628187 @default.
- W3039883906 cites W2962687275 @default.
- W3039883906 cites W2962690307 @default.
- W3039883906 cites W2962823940 @default.
- W3039883906 cites W2962859295 @default.
- W3039883906 cites W2962897020 @default.
- W3039883906 cites W2962899390 @default.
- W3039883906 cites W2962971105 @default.
- W3039883906 cites W2962976523 @default.
- W3039883906 cites W2962986791 @default.
- W3039883906 cites W2963000559 @default.
- W3039883906 cites W2963047834 @default.
- W3039883906 cites W2963107255 @default.
- W3039883906 cites W2963187488 @default.
- W3039883906 cites W2963289251 @default.
- W3039883906 cites W2963344645 @default.
- W3039883906 cites W2963444790 @default.
- W3039883906 cites W2963506806 @default.
- W3039883906 cites W2963573392 @default.
- W3039883906 cites W2963684914 @default.
- W3039883906 cites W2963709863 @default.
- W3039883906 cites W2963767194 @default.
- W3039883906 cites W2963826694 @default.
- W3039883906 cites W2963864946 @default.
- W3039883906 cites W2963870446 @default.
- W3039883906 cites W2963938442 @default.
- W3039883906 cites W2963993484 @default.
- W3039883906 cites W2964013382 @default.
- W3039883906 cites W2964055354 @default.
- W3039883906 cites W2964082983 @default.
- W3039883906 cites W2964115968 @default.
- W3039883906 cites W2964288524 @default.
- W3039883906 cites W2980096013 @default.
- W3039883906 cites W2981630749 @default.
- W3039883906 cites W2982259084 @default.
- W3039883906 cites W2986381065 @default.