Matches in SemOpenAlex for { <https://semopenalex.org/work/W3039974030> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3039974030 endingPage "17657" @default.
- W3039974030 startingPage "17646" @default.
- W3039974030 abstract "The rheology of the oil well cement plays a pivotal role in the cement placement. Accurate prediction of cement rheological parameters helps to monitor the durability and pumpability of the cement slurry. In this study, an artificial neural network is used to develop different models for the prediction of various rheological parameters such as shear stress, apparent viscosity, plastic viscosity, and yield point of a class G cement slurry with nanoclay as an additive. An extensive experimental study was conducted to generate enough data set for the training of artificial intelligence models. The class G oil well cement slurries were prepared by fixing the water-cement ratio to 0.44 and adding organically modified nanoclays as a strength enhancer. The rheological properties of the oil well cement slurries were investigated at a wide range of temperatures (37 ≤ T ≤ 90 °C) and shear rates (5 ≤ γ ≤ 500 s-1). Experimental data generated were used for the training of feed-forward neural networks. The predicted values of the rheological properties from the trained model showed a good agreement when compared with the experimental values. The average absolute percentage error was less than 5% in both training and validation phases of modeling. A trend analysis was carried out to ensure that the proposed models can define the underlying physics. From the validation and the trend analysis, it was found that the new models can be used to predict cement rheological properties within the range of data set on which the models were trained. The proposed models are independent of laboratory-dependent variables and can give quick and real-time values of the rheological parameters." @default.
- W3039974030 created "2020-07-10" @default.
- W3039974030 creator A5001477860 @default.
- W3039974030 creator A5075168324 @default.
- W3039974030 creator A5081730437 @default.
- W3039974030 date "2020-07-06" @default.
- W3039974030 modified "2023-10-12" @default.
- W3039974030 title "Development of New Rheological Models for Class G Cement with Nanoclay as an Additive Using Machine Learning Techniques" @default.
- W3039974030 cites W1995341919 @default.
- W3039974030 cites W2003040761 @default.
- W3039974030 cites W2016930458 @default.
- W3039974030 cites W2055534872 @default.
- W3039974030 cites W2061047871 @default.
- W3039974030 cites W2062571995 @default.
- W3039974030 cites W2096602286 @default.
- W3039974030 cites W2106791091 @default.
- W3039974030 cites W2174255596 @default.
- W3039974030 cites W2257422225 @default.
- W3039974030 cites W2292299207 @default.
- W3039974030 cites W2310088740 @default.
- W3039974030 cites W2323311876 @default.
- W3039974030 cites W2556209460 @default.
- W3039974030 cites W2562249723 @default.
- W3039974030 cites W2570353502 @default.
- W3039974030 cites W2604265756 @default.
- W3039974030 cites W2733906677 @default.
- W3039974030 cites W2760094850 @default.
- W3039974030 cites W2762196449 @default.
- W3039974030 cites W2794324080 @default.
- W3039974030 cites W2883903650 @default.
- W3039974030 cites W2909569382 @default.
- W3039974030 cites W2916048570 @default.
- W3039974030 cites W2942101353 @default.
- W3039974030 cites W2973411561 @default.
- W3039974030 cites W3025291046 @default.
- W3039974030 cites W887842921 @default.
- W3039974030 cites W1997626452 @default.
- W3039974030 doi "https://doi.org/10.1021/acsomega.0c02122" @default.
- W3039974030 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7377322" @default.
- W3039974030 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32715250" @default.
- W3039974030 hasPublicationYear "2020" @default.
- W3039974030 type Work @default.
- W3039974030 sameAs 3039974030 @default.
- W3039974030 citedByCount "13" @default.
- W3039974030 countsByYear W30399740302021 @default.
- W3039974030 countsByYear W30399740302022 @default.
- W3039974030 countsByYear W30399740302023 @default.
- W3039974030 crossrefType "journal-article" @default.
- W3039974030 hasAuthorship W3039974030A5001477860 @default.
- W3039974030 hasAuthorship W3039974030A5075168324 @default.
- W3039974030 hasAuthorship W3039974030A5081730437 @default.
- W3039974030 hasBestOaLocation W30399740301 @default.
- W3039974030 hasConcept C104304963 @default.
- W3039974030 hasConcept C127172972 @default.
- W3039974030 hasConcept C154945302 @default.
- W3039974030 hasConcept C159985019 @default.
- W3039974030 hasConcept C192562407 @default.
- W3039974030 hasConcept C200990466 @default.
- W3039974030 hasConcept C41008148 @default.
- W3039974030 hasConcept C50644808 @default.
- W3039974030 hasConcept C523993062 @default.
- W3039974030 hasConcept C94293008 @default.
- W3039974030 hasConceptScore W3039974030C104304963 @default.
- W3039974030 hasConceptScore W3039974030C127172972 @default.
- W3039974030 hasConceptScore W3039974030C154945302 @default.
- W3039974030 hasConceptScore W3039974030C159985019 @default.
- W3039974030 hasConceptScore W3039974030C192562407 @default.
- W3039974030 hasConceptScore W3039974030C200990466 @default.
- W3039974030 hasConceptScore W3039974030C41008148 @default.
- W3039974030 hasConceptScore W3039974030C50644808 @default.
- W3039974030 hasConceptScore W3039974030C523993062 @default.
- W3039974030 hasConceptScore W3039974030C94293008 @default.
- W3039974030 hasIssue "28" @default.
- W3039974030 hasLocation W30399740301 @default.
- W3039974030 hasLocation W30399740302 @default.
- W3039974030 hasLocation W30399740303 @default.
- W3039974030 hasLocation W30399740304 @default.
- W3039974030 hasLocation W30399740305 @default.
- W3039974030 hasOpenAccess W3039974030 @default.
- W3039974030 hasPrimaryLocation W30399740301 @default.
- W3039974030 hasRelatedWork W1458806294 @default.
- W3039974030 hasRelatedWork W1567463853 @default.
- W3039974030 hasRelatedWork W159888992 @default.
- W3039974030 hasRelatedWork W2161251670 @default.
- W3039974030 hasRelatedWork W2352180411 @default.
- W3039974030 hasRelatedWork W2363848514 @default.
- W3039974030 hasRelatedWork W2369078514 @default.
- W3039974030 hasRelatedWork W2380892508 @default.
- W3039974030 hasRelatedWork W2383029746 @default.
- W3039974030 hasRelatedWork W2386194254 @default.
- W3039974030 hasVolume "5" @default.
- W3039974030 isParatext "false" @default.
- W3039974030 isRetracted "false" @default.
- W3039974030 magId "3039974030" @default.
- W3039974030 workType "article" @default.