Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040053148> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3040053148 endingPage "1944" @default.
- W3040053148 startingPage "1929" @default.
- W3040053148 abstract "The prediction of particles less than 2.5 micrometers in diameter (PM2.5) in fog and haze has been paid more and more attention, but the prediction accuracy of the results is not ideal. Haze prediction algorithms based on traditional numerical and statistical prediction have poor effects on nonlinear data prediction of haze. In order to improve the effects of prediction, this paper proposes a haze feature extraction and pollution level identification pre-warning algorithm based on feature selection and integrated learning. Minimum Redundancy Maximum Relevance method is used to extract low-level features of haze, and deep confidence network is utilized to extract high-level features. eXtreme Gradient Boosting algorithm is adopted to fuse low-level and high-level features, as well as predict haze. Establish PM2.5 concentration pollution grade classification index, and grade the forecast data. The expert experience knowledge is utilized to assist the optimization of the pre-warning results. The experiment results show the presented algorithm can get better prediction effects than the results of Support Vector Machine (SVM) and Back Propagation (BP) widely used at present, the accuracy has greatly improved compared with SVM and BP." @default.
- W3040053148 created "2020-07-10" @default.
- W3040053148 creator A5011233050 @default.
- W3040053148 creator A5019845321 @default.
- W3040053148 creator A5042700901 @default.
- W3040053148 creator A5045468274 @default.
- W3040053148 creator A5049238974 @default.
- W3040053148 creator A5087528544 @default.
- W3040053148 date "2020-01-01" @default.
- W3040053148 modified "2023-10-16" @default.
- W3040053148 title "A Haze Feature Extraction and Pollution Level Identification Pre-warning Algorithm" @default.
- W3040053148 cites W1980891198 @default.
- W3040053148 cites W1982209893 @default.
- W3040053148 cites W2044333852 @default.
- W3040053148 cites W2091214913 @default.
- W3040053148 cites W2094172643 @default.
- W3040053148 cites W2100495367 @default.
- W3040053148 cites W2102567523 @default.
- W3040053148 cites W2395635051 @default.
- W3040053148 cites W2537920852 @default.
- W3040053148 cites W2742592367 @default.
- W3040053148 cites W2760415806 @default.
- W3040053148 cites W2790914279 @default.
- W3040053148 cites W2801886179 @default.
- W3040053148 cites W2809285241 @default.
- W3040053148 cites W2947863156 @default.
- W3040053148 cites W2949922688 @default.
- W3040053148 cites W2980437376 @default.
- W3040053148 doi "https://doi.org/10.32604/cmc.2020.010556" @default.
- W3040053148 hasPublicationYear "2020" @default.
- W3040053148 type Work @default.
- W3040053148 sameAs 3040053148 @default.
- W3040053148 citedByCount "0" @default.
- W3040053148 crossrefType "journal-article" @default.
- W3040053148 hasAuthorship W3040053148A5011233050 @default.
- W3040053148 hasAuthorship W3040053148A5019845321 @default.
- W3040053148 hasAuthorship W3040053148A5042700901 @default.
- W3040053148 hasAuthorship W3040053148A5045468274 @default.
- W3040053148 hasAuthorship W3040053148A5049238974 @default.
- W3040053148 hasAuthorship W3040053148A5087528544 @default.
- W3040053148 hasBestOaLocation W30400531481 @default.
- W3040053148 hasConcept C111919701 @default.
- W3040053148 hasConcept C11413529 @default.
- W3040053148 hasConcept C119857082 @default.
- W3040053148 hasConcept C121332964 @default.
- W3040053148 hasConcept C12267149 @default.
- W3040053148 hasConcept C124101348 @default.
- W3040053148 hasConcept C148483581 @default.
- W3040053148 hasConcept C152124472 @default.
- W3040053148 hasConcept C153180895 @default.
- W3040053148 hasConcept C153294291 @default.
- W3040053148 hasConcept C154945302 @default.
- W3040053148 hasConcept C41008148 @default.
- W3040053148 hasConcept C46686674 @default.
- W3040053148 hasConcept C52622490 @default.
- W3040053148 hasConcept C79974267 @default.
- W3040053148 hasConceptScore W3040053148C111919701 @default.
- W3040053148 hasConceptScore W3040053148C11413529 @default.
- W3040053148 hasConceptScore W3040053148C119857082 @default.
- W3040053148 hasConceptScore W3040053148C121332964 @default.
- W3040053148 hasConceptScore W3040053148C12267149 @default.
- W3040053148 hasConceptScore W3040053148C124101348 @default.
- W3040053148 hasConceptScore W3040053148C148483581 @default.
- W3040053148 hasConceptScore W3040053148C152124472 @default.
- W3040053148 hasConceptScore W3040053148C153180895 @default.
- W3040053148 hasConceptScore W3040053148C153294291 @default.
- W3040053148 hasConceptScore W3040053148C154945302 @default.
- W3040053148 hasConceptScore W3040053148C41008148 @default.
- W3040053148 hasConceptScore W3040053148C46686674 @default.
- W3040053148 hasConceptScore W3040053148C52622490 @default.
- W3040053148 hasConceptScore W3040053148C79974267 @default.
- W3040053148 hasIssue "3" @default.
- W3040053148 hasLocation W30400531481 @default.
- W3040053148 hasLocation W30400531482 @default.
- W3040053148 hasOpenAccess W3040053148 @default.
- W3040053148 hasPrimaryLocation W30400531481 @default.
- W3040053148 hasRelatedWork W1996541855 @default.
- W3040053148 hasRelatedWork W2126100045 @default.
- W3040053148 hasRelatedWork W2336974148 @default.
- W3040053148 hasRelatedWork W2340694410 @default.
- W3040053148 hasRelatedWork W2381773606 @default.
- W3040053148 hasRelatedWork W3105251098 @default.
- W3040053148 hasRelatedWork W3195168932 @default.
- W3040053148 hasRelatedWork W4225360039 @default.
- W3040053148 hasRelatedWork W2187500075 @default.
- W3040053148 hasRelatedWork W2345184372 @default.
- W3040053148 hasVolume "64" @default.
- W3040053148 isParatext "false" @default.
- W3040053148 isRetracted "false" @default.
- W3040053148 magId "3040053148" @default.
- W3040053148 workType "article" @default.