Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040072180> ?p ?o ?g. }
- W3040072180 endingPage "164" @default.
- W3040072180 startingPage "150" @default.
- W3040072180 abstract "There has been a recent surge in the number of tissue-engineering protocols that use gradient biomaterials to replicate key developmental processes or functional roles. Recent advances in additive manufacturing (e.g., 3D bioprinting, microfluidics) have led to increased structural complexity in bottom-up gradient biomaterial fabrication. A growing number of reports are seeking to use applied forces that redistribute components of homogeneous systems to fabricate biomaterials with well-integrated gradients. A small number of recent studies have fabricated gradient biomaterials by controlling the temperature or light exposure during hydrogel crosslinking. Recent reports have demonstrated the fabrication of gradient biomaterials by postmodifying precast hydrogels or solid scaffolds using mechanisms based on temperature, light, or diffusion. Natural tissues and organs exhibit an array of spatial gradients, from the polarized neural tube during embryonic development to the osteochondral interface present at articulating joints. The strong structure–function relationships in these heterogeneous tissues have sparked intensive research into the development of methods that can replicate physiological gradients in engineered tissues. In this Review, we consider different gradients present in natural tissues and discuss their critical importance in functional tissue engineering. Using this basis, we consolidate the existing fabrication methods into four categories: additive manufacturing, component redistribution, controlled phase changes, and postmodification. We have illustrated this with recent examples, highlighted prominent trends in the field, and outlined a set of criteria and perspectives for gradient fabrication. Natural tissues and organs exhibit an array of spatial gradients, from the polarized neural tube during embryonic development to the osteochondral interface present at articulating joints. The strong structure–function relationships in these heterogeneous tissues have sparked intensive research into the development of methods that can replicate physiological gradients in engineered tissues. In this Review, we consider different gradients present in natural tissues and discuss their critical importance in functional tissue engineering. Using this basis, we consolidate the existing fabrication methods into four categories: additive manufacturing, component redistribution, controlled phase changes, and postmodification. We have illustrated this with recent examples, highlighted prominent trends in the field, and outlined a set of criteria and perspectives for gradient fabrication. load-bearing collagenous tissue present at the end of long bones. the fluids, typically containing viable cells, deposited during bioprinting. the use of computer-aided transfer processes for the patterning and assembly of living and nonliving materials with a defined 2D or 3D architecture. dense mineralized tissue found predominantly at the surface of long bones and flat bones. mononucleate, rounded cells of mesenchymal origin that are responsible for the formation and remodeling of cartilage tissue. relating to the formation of cartilage. a processing method that uses electric fields to generate fibrous scaffolds from polymer solutions. interfacial tissue where bone forms a connection to a tendon, ligament, fascia, or capsule. a cancer cell type thought to arise from nonmalignant glial cells. nonproliferative swollen chondrocytes that direct mineralization and vascularization during endochondral bone formation. the sublimation of ice from frozen materials at reduced pressure; synonym for ‘freeze-drying.’ multipotent cells that give rise to cells of chondrogenic, osteogenic, and adipogenic lineage. the embryonic precursor to the central nervous system. mononucleate, cuboid cells of mesenchymal origin that are responsible for the formation of bone tissue. interfacial tissue comprising subchondral bone and articular cartilage. progenitor cells of mesenchymal origin that give rise to osteoblasts or chondrocytes. relating to the formation of bone." @default.
- W3040072180 created "2020-07-10" @default.
- W3040072180 creator A5001320729 @default.
- W3040072180 creator A5001949449 @default.
- W3040072180 creator A5024959686 @default.
- W3040072180 creator A5044430674 @default.
- W3040072180 date "2021-02-01" @default.
- W3040072180 modified "2023-10-04" @default.
- W3040072180 title "Advances in the Fabrication of Biomaterials for Gradient Tissue Engineering" @default.
- W3040072180 cites W1562252502 @default.
- W3040072180 cites W1728059060 @default.
- W3040072180 cites W1974664166 @default.
- W3040072180 cites W1988152718 @default.
- W3040072180 cites W1990312139 @default.
- W3040072180 cites W2011038175 @default.
- W3040072180 cites W2012119502 @default.
- W3040072180 cites W2013827506 @default.
- W3040072180 cites W2017896922 @default.
- W3040072180 cites W2019264546 @default.
- W3040072180 cites W2025571561 @default.
- W3040072180 cites W2038120349 @default.
- W3040072180 cites W2042932723 @default.
- W3040072180 cites W2043608961 @default.
- W3040072180 cites W2049888003 @default.
- W3040072180 cites W2052954140 @default.
- W3040072180 cites W2069636884 @default.
- W3040072180 cites W2086149144 @default.
- W3040072180 cites W2088868630 @default.
- W3040072180 cites W2099164785 @default.
- W3040072180 cites W2106016874 @default.
- W3040072180 cites W2110067715 @default.
- W3040072180 cites W2122436846 @default.
- W3040072180 cites W2128186432 @default.
- W3040072180 cites W2133387529 @default.
- W3040072180 cites W2148187477 @default.
- W3040072180 cites W2153622624 @default.
- W3040072180 cites W2218826205 @default.
- W3040072180 cites W2295567674 @default.
- W3040072180 cites W2300394170 @default.
- W3040072180 cites W2315372551 @default.
- W3040072180 cites W2345309516 @default.
- W3040072180 cites W2346458254 @default.
- W3040072180 cites W2406723148 @default.
- W3040072180 cites W2413702741 @default.
- W3040072180 cites W2500804873 @default.
- W3040072180 cites W2514112560 @default.
- W3040072180 cites W2556173822 @default.
- W3040072180 cites W2562138901 @default.
- W3040072180 cites W2562982267 @default.
- W3040072180 cites W2580007185 @default.
- W3040072180 cites W2595580100 @default.
- W3040072180 cites W2598108676 @default.
- W3040072180 cites W2602592167 @default.
- W3040072180 cites W2618828505 @default.
- W3040072180 cites W2621425644 @default.
- W3040072180 cites W2737554817 @default.
- W3040072180 cites W2747507273 @default.
- W3040072180 cites W2749458898 @default.
- W3040072180 cites W2774276951 @default.
- W3040072180 cites W2791343783 @default.
- W3040072180 cites W2799893835 @default.
- W3040072180 cites W2801427352 @default.
- W3040072180 cites W2803847212 @default.
- W3040072180 cites W2887212468 @default.
- W3040072180 cites W2894203113 @default.
- W3040072180 cites W2898416509 @default.
- W3040072180 cites W2913809301 @default.
- W3040072180 cites W2915375191 @default.
- W3040072180 cites W2917207645 @default.
- W3040072180 cites W2923711003 @default.
- W3040072180 cites W2939436287 @default.
- W3040072180 cites W2942944033 @default.
- W3040072180 cites W2946143686 @default.
- W3040072180 cites W2947813673 @default.
- W3040072180 cites W2955696789 @default.
- W3040072180 cites W2961602854 @default.
- W3040072180 cites W2963358881 @default.
- W3040072180 cites W2964287720 @default.
- W3040072180 cites W2965443828 @default.
- W3040072180 cites W2969984833 @default.
- W3040072180 cites W2971673673 @default.
- W3040072180 cites W2985820547 @default.
- W3040072180 cites W2989443459 @default.
- W3040072180 cites W2994522754 @default.
- W3040072180 cites W2996307917 @default.
- W3040072180 cites W3003167116 @default.
- W3040072180 cites W3004677406 @default.
- W3040072180 cites W3005738620 @default.
- W3040072180 cites W3006446367 @default.
- W3040072180 cites W3007253077 @default.
- W3040072180 cites W3007548603 @default.
- W3040072180 cites W3010444117 @default.
- W3040072180 cites W4246453068 @default.
- W3040072180 doi "https://doi.org/10.1016/j.tibtech.2020.06.005" @default.
- W3040072180 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32650955" @default.
- W3040072180 hasPublicationYear "2021" @default.
- W3040072180 type Work @default.
- W3040072180 sameAs 3040072180 @default.