Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040147484> ?p ?o ?g. }
- W3040147484 endingPage "264" @default.
- W3040147484 startingPage "251" @default.
- W3040147484 abstract "Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact. Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact." @default.
- W3040147484 created "2020-07-10" @default.
- W3040147484 creator A5009070946 @default.
- W3040147484 creator A5015537539 @default.
- W3040147484 creator A5020107496 @default.
- W3040147484 creator A5029312878 @default.
- W3040147484 creator A5041569085 @default.
- W3040147484 creator A5049047999 @default.
- W3040147484 creator A5050165878 @default.
- W3040147484 creator A5051603368 @default.
- W3040147484 creator A5058624350 @default.
- W3040147484 creator A5068695059 @default.
- W3040147484 creator A5073339482 @default.
- W3040147484 date "2020-08-01" @default.
- W3040147484 modified "2023-10-05" @default.
- W3040147484 title "Characterization of Exome Variants and Their Metabolic Impact in 6,716 American Indians from the Southwest US" @default.
- W3040147484 cites W1626408496 @default.
- W3040147484 cites W1906033696 @default.
- W3040147484 cites W1926851645 @default.
- W3040147484 cites W1935567550 @default.
- W3040147484 cites W1964279010 @default.
- W3040147484 cites W1966775465 @default.
- W3040147484 cites W1966945429 @default.
- W3040147484 cites W1968949098 @default.
- W3040147484 cites W1970413157 @default.
- W3040147484 cites W1971430873 @default.
- W3040147484 cites W1980349137 @default.
- W3040147484 cites W1980740976 @default.
- W3040147484 cites W1991922215 @default.
- W3040147484 cites W1993462529 @default.
- W3040147484 cites W1994633217 @default.
- W3040147484 cites W2015231252 @default.
- W3040147484 cites W2017319919 @default.
- W3040147484 cites W2020734415 @default.
- W3040147484 cites W2021348198 @default.
- W3040147484 cites W2026619107 @default.
- W3040147484 cites W2030048566 @default.
- W3040147484 cites W2033151532 @default.
- W3040147484 cites W2034396307 @default.
- W3040147484 cites W2035252462 @default.
- W3040147484 cites W2049783626 @default.
- W3040147484 cites W2054634636 @default.
- W3040147484 cites W2059145105 @default.
- W3040147484 cites W2076129201 @default.
- W3040147484 cites W2087581711 @default.
- W3040147484 cites W2094579373 @default.
- W3040147484 cites W2098482403 @default.
- W3040147484 cites W2099085143 @default.
- W3040147484 cites W2102848212 @default.
- W3040147484 cites W2104549677 @default.
- W3040147484 cites W2104625557 @default.
- W3040147484 cites W2105363357 @default.
- W3040147484 cites W2106578986 @default.
- W3040147484 cites W2107502552 @default.
- W3040147484 cites W2110958740 @default.
- W3040147484 cites W2116921200 @default.
- W3040147484 cites W2126135274 @default.
- W3040147484 cites W2127812547 @default.
- W3040147484 cites W2129234601 @default.
- W3040147484 cites W2132018683 @default.
- W3040147484 cites W2132297623 @default.
- W3040147484 cites W2134120897 @default.
- W3040147484 cites W2136472893 @default.
- W3040147484 cites W2145187337 @default.
- W3040147484 cites W2148870581 @default.
- W3040147484 cites W2163488353 @default.
- W3040147484 cites W2165152058 @default.
- W3040147484 cites W2170093293 @default.
- W3040147484 cites W2170293889 @default.
- W3040147484 cites W2299688837 @default.
- W3040147484 cites W2303094910 @default.
- W3040147484 cites W2308114005 @default.
- W3040147484 cites W2407085565 @default.
- W3040147484 cites W2524585766 @default.
- W3040147484 cites W2550835803 @default.
- W3040147484 cites W2562408240 @default.
- W3040147484 cites W2610755128 @default.
- W3040147484 cites W2619135473 @default.
- W3040147484 cites W2625542296 @default.
- W3040147484 cites W2689256168 @default.
- W3040147484 cites W2735404674 @default.
- W3040147484 cites W2747264648 @default.
- W3040147484 cites W2767038995 @default.
- W3040147484 cites W2775410262 @default.
- W3040147484 cites W2794189649 @default.
- W3040147484 cites W2894662039 @default.
- W3040147484 cites W2895486342 @default.
- W3040147484 cites W2899997727 @default.
- W3040147484 cites W2923369933 @default.
- W3040147484 cites W2924503078 @default.
- W3040147484 cites W2946343948 @default.
- W3040147484 cites W2950099124 @default.
- W3040147484 cites W2952883732 @default.
- W3040147484 cites W2966176854 @default.
- W3040147484 doi "https://doi.org/10.1016/j.ajhg.2020.06.009" @default.
- W3040147484 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7413855" @default.
- W3040147484 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32640185" @default.
- W3040147484 hasPublicationYear "2020" @default.