Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040197709> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3040197709 endingPage "103866" @default.
- W3040197709 startingPage "103866" @default.
- W3040197709 abstract "The electrocardiogram (ECG) is an effective tool for cardiovascular disease diagnosis and arrhythmia detection. Most methods proposed in the literature include the following steps: 1) denoizing, 2) segmentation into heartbeats, 3) feature extraction, and 4) classification. In this paper, we present a deep learning method based on a convolutional neural network (CNN) model. CNN models can perform feature extraction automatically and jointly with the classification step. In other words, our proposed method does not require a feature extraction step with hand-crafted techniques. Our proposed method is also based on an algorithm for heartbeat segmentation that is different from most existing methods. In particular, the segmentation algorithm defines each ECG heartbeat to start at an R-peak and end after 1.2 times the median RR time interval in a 10-s window. This method is simple and effective, as it does not use any form of filtering or processing that requires assumptions about the signal morphology or spectrum. Although enhanced ECG heartbeat classification algorithms have been proposed in the literature, they failed to achieve high performance in detecting some heartbeat categories, especially for imbalanced datasets. To overcome this challenge, we propose an optimization step for the deep CNN model using a novel loss function called focal loss. This function focuses on minority heartbeat classes by increasing their importance. We trained and evaluated our proposed model with the MIT-BIH and INCART datasets to identify five arrhythmia categories (N, S, V, Q, and F) based on the Association for Advancement of Medical Instrumentation (AAMI) standard. The evaluation results revealed that the focal loss function improved the classification accuracy for the minority classes as well as the overall metrics. Our proposed method achieved 98.41% overall accuracy, 98.38% overall F1-score, 98.37% overall precision, and 98.41% overall recall. In addition, our method achieved better performance than that of existing state-of-the-art methods." @default.
- W3040197709 created "2020-07-10" @default.
- W3040197709 creator A5030617821 @default.
- W3040197709 creator A5033768095 @default.
- W3040197709 creator A5074456682 @default.
- W3040197709 creator A5091408403 @default.
- W3040197709 date "2020-08-01" @default.
- W3040197709 modified "2023-10-17" @default.
- W3040197709 title "Electrocardiogram heartbeat classification based on a deep convolutional neural network and focal loss" @default.
- W3040197709 cites W2000970244 @default.
- W3040197709 cites W2045703052 @default.
- W3040197709 cites W2045867791 @default.
- W3040197709 cites W2053903411 @default.
- W3040197709 cites W2095409369 @default.
- W3040197709 cites W2114842946 @default.
- W3040197709 cites W2155653793 @default.
- W3040197709 cites W2162800060 @default.
- W3040197709 cites W2251133041 @default.
- W3040197709 cites W2482102801 @default.
- W3040197709 cites W2560188138 @default.
- W3040197709 cites W2598193574 @default.
- W3040197709 cites W2748902594 @default.
- W3040197709 cites W2751547580 @default.
- W3040197709 cites W2752038097 @default.
- W3040197709 cites W2752622268 @default.
- W3040197709 cites W2795302640 @default.
- W3040197709 cites W2799460054 @default.
- W3040197709 cites W2800884944 @default.
- W3040197709 cites W2800952622 @default.
- W3040197709 cites W2870301986 @default.
- W3040197709 cites W2895509920 @default.
- W3040197709 cites W2917847064 @default.
- W3040197709 cites W2921787039 @default.
- W3040197709 cites W2944062336 @default.
- W3040197709 cites W2948128401 @default.
- W3040197709 cites W2990816939 @default.
- W3040197709 cites W2996793270 @default.
- W3040197709 cites W3004521821 @default.
- W3040197709 cites W3010497573 @default.
- W3040197709 cites W3021010134 @default.
- W3040197709 doi "https://doi.org/10.1016/j.compbiomed.2020.103866" @default.
- W3040197709 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32658786" @default.
- W3040197709 hasPublicationYear "2020" @default.
- W3040197709 type Work @default.
- W3040197709 sameAs 3040197709 @default.
- W3040197709 citedByCount "64" @default.
- W3040197709 countsByYear W30401977092020 @default.
- W3040197709 countsByYear W30401977092021 @default.
- W3040197709 countsByYear W30401977092022 @default.
- W3040197709 countsByYear W30401977092023 @default.
- W3040197709 crossrefType "journal-article" @default.
- W3040197709 hasAuthorship W3040197709A5030617821 @default.
- W3040197709 hasAuthorship W3040197709A5033768095 @default.
- W3040197709 hasAuthorship W3040197709A5074456682 @default.
- W3040197709 hasAuthorship W3040197709A5091408403 @default.
- W3040197709 hasConcept C13852961 @default.
- W3040197709 hasConcept C153180895 @default.
- W3040197709 hasConcept C154945302 @default.
- W3040197709 hasConcept C38652104 @default.
- W3040197709 hasConcept C41008148 @default.
- W3040197709 hasConcept C81363708 @default.
- W3040197709 hasConceptScore W3040197709C13852961 @default.
- W3040197709 hasConceptScore W3040197709C153180895 @default.
- W3040197709 hasConceptScore W3040197709C154945302 @default.
- W3040197709 hasConceptScore W3040197709C38652104 @default.
- W3040197709 hasConceptScore W3040197709C41008148 @default.
- W3040197709 hasConceptScore W3040197709C81363708 @default.
- W3040197709 hasFunder F4320334937 @default.
- W3040197709 hasLocation W30401977091 @default.
- W3040197709 hasOpenAccess W3040197709 @default.
- W3040197709 hasPrimaryLocation W30401977091 @default.
- W3040197709 hasRelatedWork W2175746458 @default.
- W3040197709 hasRelatedWork W2732542196 @default.
- W3040197709 hasRelatedWork W2738221750 @default.
- W3040197709 hasRelatedWork W2758063741 @default.
- W3040197709 hasRelatedWork W2760085659 @default.
- W3040197709 hasRelatedWork W2912288872 @default.
- W3040197709 hasRelatedWork W3012978760 @default.
- W3040197709 hasRelatedWork W3081496756 @default.
- W3040197709 hasRelatedWork W3093612317 @default.
- W3040197709 hasRelatedWork W4304820710 @default.
- W3040197709 hasVolume "123" @default.
- W3040197709 isParatext "false" @default.
- W3040197709 isRetracted "false" @default.
- W3040197709 magId "3040197709" @default.
- W3040197709 workType "article" @default.