Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040204883> ?p ?o ?g. }
- W3040204883 abstract "Social networks enable people to interact with one another by sharing information, sending messages, making friends, and having discussions, which generates massive amounts of data every day, popularly called as the user-generated content. This data is present in various forms such as images, text, videos, links, and others and reflects user behaviours including their mental states. It is challenging yet promising to automatically detect mental health problems from such data which is short, sparse and sometimes poorly phrased. However, there are efforts to automatically learn patterns using computational models on such user-generated content. While many previous works have largely studied the problem on a small-scale by assuming uni-modality of data which may not give us faithful results, we propose a novel scalable hybrid model that combines Bidirectional Gated Recurrent Units (BiGRUs) and Convolutional Neural Networks to detect depressed users on social media such as Twitter-based on multi-modal features. Specifically, we encode words in user posts using pre-trained word embeddings and BiGRUs to capture latent behavioural patterns, long-term dependencies, and correlation across the modalities, including semantic sequence features from the user timelines (posts). The CNN model then helps learn useful features. Our experiments show that our model outperforms several popular and strong baseline methods, demonstrating the effectiveness of combining deep learning with multi-modal features. We also show that our model helps improve predictive performance when detecting depression in users who are posting messages publicly on social media." @default.
- W3040204883 created "2020-07-10" @default.
- W3040204883 creator A5051512158 @default.
- W3040204883 creator A5076107706 @default.
- W3040204883 creator A5082611298 @default.
- W3040204883 creator A5083589591 @default.
- W3040204883 date "2020-07-03" @default.
- W3040204883 modified "2023-10-14" @default.
- W3040204883 title "Depression Detection with Multi-Modalities Using a Hybrid Deep Learning Model on Social Media" @default.
- W3040204883 cites W1563572320 @default.
- W3040204883 cites W1714665356 @default.
- W3040204883 cites W1880262756 @default.
- W3040204883 cites W1924770834 @default.
- W3040204883 cites W1937075317 @default.
- W3040204883 cites W2008865762 @default.
- W3040204883 cites W2050023720 @default.
- W3040204883 cites W2059944506 @default.
- W3040204883 cites W2065992229 @default.
- W3040204883 cites W2100163972 @default.
- W3040204883 cites W2121079831 @default.
- W3040204883 cites W2122522916 @default.
- W3040204883 cites W2125269912 @default.
- W3040204883 cites W2133568543 @default.
- W3040204883 cites W2153635508 @default.
- W3040204883 cites W2163614729 @default.
- W3040204883 cites W2169606435 @default.
- W3040204883 cites W2186329757 @default.
- W3040204883 cites W2250539671 @default.
- W3040204883 cites W2251383488 @default.
- W3040204883 cites W2288128171 @default.
- W3040204883 cites W2402700 @default.
- W3040204883 cites W2755414044 @default.
- W3040204883 cites W2766165088 @default.
- W3040204883 cites W2768537477 @default.
- W3040204883 cites W2770546324 @default.
- W3040204883 cites W2780932362 @default.
- W3040204883 cites W2787560479 @default.
- W3040204883 cites W2806881496 @default.
- W3040204883 cites W2809356716 @default.
- W3040204883 cites W2890968313 @default.
- W3040204883 cites W2894531592 @default.
- W3040204883 cites W2901078833 @default.
- W3040204883 cites W2924444146 @default.
- W3040204883 cites W2950572117 @default.
- W3040204883 cites W2952828476 @default.
- W3040204883 cites W2963341956 @default.
- W3040204883 cites W2972562299 @default.
- W3040204883 cites W2989199981 @default.
- W3040204883 cites W3005030369 @default.
- W3040204883 cites W3005919187 @default.
- W3040204883 cites W3013908145 @default.
- W3040204883 cites W3015228357 @default.
- W3040204883 cites W3015987833 @default.
- W3040204883 cites W3016207173 @default.
- W3040204883 cites W3016500926 @default.
- W3040204883 cites W3022010821 @default.
- W3040204883 cites W3022552813 @default.
- W3040204883 cites W3023846141 @default.
- W3040204883 cites W3029915594 @default.
- W3040204883 cites W3033213562 @default.
- W3040204883 cites W3033913896 @default.
- W3040204883 cites W3034599802 @default.
- W3040204883 cites W3035015271 @default.
- W3040204883 cites W3101267588 @default.
- W3040204883 cites W634026210 @default.
- W3040204883 hasPublicationYear "2020" @default.
- W3040204883 type Work @default.
- W3040204883 sameAs 3040204883 @default.
- W3040204883 citedByCount "2" @default.
- W3040204883 countsByYear W30402048832020 @default.
- W3040204883 countsByYear W30402048832021 @default.
- W3040204883 crossrefType "posted-content" @default.
- W3040204883 hasAuthorship W3040204883A5051512158 @default.
- W3040204883 hasAuthorship W3040204883A5076107706 @default.
- W3040204883 hasAuthorship W3040204883A5082611298 @default.
- W3040204883 hasAuthorship W3040204883A5083589591 @default.
- W3040204883 hasConcept C104317684 @default.
- W3040204883 hasConcept C108583219 @default.
- W3040204883 hasConcept C111368507 @default.
- W3040204883 hasConcept C119857082 @default.
- W3040204883 hasConcept C124101348 @default.
- W3040204883 hasConcept C12725497 @default.
- W3040204883 hasConcept C127313418 @default.
- W3040204883 hasConcept C136764020 @default.
- W3040204883 hasConcept C144024400 @default.
- W3040204883 hasConcept C154945302 @default.
- W3040204883 hasConcept C166957645 @default.
- W3040204883 hasConcept C185592680 @default.
- W3040204883 hasConcept C23123220 @default.
- W3040204883 hasConcept C2779903281 @default.
- W3040204883 hasConcept C2780226545 @default.
- W3040204883 hasConcept C36289849 @default.
- W3040204883 hasConcept C41008148 @default.
- W3040204883 hasConcept C4438859 @default.
- W3040204883 hasConcept C48044578 @default.
- W3040204883 hasConcept C518677369 @default.
- W3040204883 hasConcept C55493867 @default.
- W3040204883 hasConcept C66746571 @default.
- W3040204883 hasConcept C75684735 @default.
- W3040204883 hasConcept C77088390 @default.