Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040210006> ?p ?o ?g. }
- W3040210006 endingPage "4582" @default.
- W3040210006 startingPage "4582" @default.
- W3040210006 abstract "Multi-expert multi-criterion decision-making problems are complicated decision issues. Different experts have different opinions with regard to multi-criterion decision-making problems, depending on their background and experience. These experts provide information that usually contains certain, uncertain, and incomplete information simultaneously. However, traditional computing methods only fully consider certain information, and ignore uncertain or incomplete information, which causes information distortion in assessment results. In order to effectively solve the above problems, this paper proposes a new flexible method for solving multi-expert multi-criterion decision-making problem. The primary purpose of the proposed method is to fully consider all information provided by experts to avoid information distortion of assessment results. Finally, an illustrative example of computer numerical control (CNC) machine tool selection is provided to prove the practicality of the proposed method. After comparing the results generated by proposed method with the results generated using linguistic ordered weighted geometric averaging operator (LOWGA) operator and induced LOWGA operator methods, the results indicate that the proposed method integrating an induced LOWGA operator and a hesitant fuzzy linguistic term set is more flexible and is able to reflect real-world situations." @default.
- W3040210006 created "2020-07-10" @default.
- W3040210006 creator A5055064817 @default.
- W3040210006 creator A5064275960 @default.
- W3040210006 creator A5089147060 @default.
- W3040210006 date "2020-07-01" @default.
- W3040210006 modified "2023-10-16" @default.
- W3040210006 title "A New Flexible Method for Solving Multi-Expert Multi-Criterion Decision-Making Problems" @default.
- W3040210006 cites W1167383870 @default.
- W3040210006 cites W1216298410 @default.
- W3040210006 cites W1502216592 @default.
- W3040210006 cites W1508253378 @default.
- W3040210006 cites W1690339857 @default.
- W3040210006 cites W1922946994 @default.
- W3040210006 cites W1930081464 @default.
- W3040210006 cites W1971403896 @default.
- W3040210006 cites W1973278173 @default.
- W3040210006 cites W1973280736 @default.
- W3040210006 cites W1978062397 @default.
- W3040210006 cites W1980386320 @default.
- W3040210006 cites W1985658539 @default.
- W3040210006 cites W2001573881 @default.
- W3040210006 cites W2010621238 @default.
- W3040210006 cites W2015287825 @default.
- W3040210006 cites W2016826540 @default.
- W3040210006 cites W2038611322 @default.
- W3040210006 cites W2045046082 @default.
- W3040210006 cites W2047833440 @default.
- W3040210006 cites W2060907774 @default.
- W3040210006 cites W2064140863 @default.
- W3040210006 cites W2065043952 @default.
- W3040210006 cites W2067472336 @default.
- W3040210006 cites W2085799624 @default.
- W3040210006 cites W2116290285 @default.
- W3040210006 cites W2120759715 @default.
- W3040210006 cites W2163481099 @default.
- W3040210006 cites W2170870530 @default.
- W3040210006 cites W2175717866 @default.
- W3040210006 cites W2178862991 @default.
- W3040210006 cites W2185786173 @default.
- W3040210006 cites W2232916842 @default.
- W3040210006 cites W2251169487 @default.
- W3040210006 cites W2252758344 @default.
- W3040210006 cites W2265675058 @default.
- W3040210006 cites W2279167019 @default.
- W3040210006 cites W2302915988 @default.
- W3040210006 cites W2342877758 @default.
- W3040210006 cites W2419153331 @default.
- W3040210006 cites W2464729206 @default.
- W3040210006 cites W2797825943 @default.
- W3040210006 cites W2954235980 @default.
- W3040210006 cites W2954673395 @default.
- W3040210006 cites W2972013764 @default.
- W3040210006 cites W2978935749 @default.
- W3040210006 cites W2990072742 @default.
- W3040210006 cites W4238741196 @default.
- W3040210006 cites W4239165868 @default.
- W3040210006 doi "https://doi.org/10.3390/app10134582" @default.
- W3040210006 hasPublicationYear "2020" @default.
- W3040210006 type Work @default.
- W3040210006 sameAs 3040210006 @default.
- W3040210006 citedByCount "5" @default.
- W3040210006 countsByYear W30402100062021 @default.
- W3040210006 countsByYear W30402100062022 @default.
- W3040210006 countsByYear W30402100062023 @default.
- W3040210006 crossrefType "journal-article" @default.
- W3040210006 hasAuthorship W3040210006A5055064817 @default.
- W3040210006 hasAuthorship W3040210006A5064275960 @default.
- W3040210006 hasAuthorship W3040210006A5089147060 @default.
- W3040210006 hasBestOaLocation W30402100061 @default.
- W3040210006 hasConcept C104317684 @default.
- W3040210006 hasConcept C121332964 @default.
- W3040210006 hasConcept C124101348 @default.
- W3040210006 hasConcept C126255220 @default.
- W3040210006 hasConcept C126780896 @default.
- W3040210006 hasConcept C154945302 @default.
- W3040210006 hasConcept C158448853 @default.
- W3040210006 hasConcept C17020691 @default.
- W3040210006 hasConcept C177264268 @default.
- W3040210006 hasConcept C185592680 @default.
- W3040210006 hasConcept C194257627 @default.
- W3040210006 hasConcept C199360897 @default.
- W3040210006 hasConcept C2776257435 @default.
- W3040210006 hasConcept C31258907 @default.
- W3040210006 hasConcept C33923547 @default.
- W3040210006 hasConcept C41008148 @default.
- W3040210006 hasConcept C55493867 @default.
- W3040210006 hasConcept C61797465 @default.
- W3040210006 hasConcept C62520636 @default.
- W3040210006 hasConcept C81917197 @default.
- W3040210006 hasConcept C86339819 @default.
- W3040210006 hasConceptScore W3040210006C104317684 @default.
- W3040210006 hasConceptScore W3040210006C121332964 @default.
- W3040210006 hasConceptScore W3040210006C124101348 @default.
- W3040210006 hasConceptScore W3040210006C126255220 @default.
- W3040210006 hasConceptScore W3040210006C126780896 @default.
- W3040210006 hasConceptScore W3040210006C154945302 @default.
- W3040210006 hasConceptScore W3040210006C158448853 @default.