Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040270067> ?p ?o ?g. }
- W3040270067 endingPage "105581" @default.
- W3040270067 startingPage "105581" @default.
- W3040270067 abstract "Timely and accurate monitoring of crop patterns in smallholder agricultural areas is essential for guiding local crop yield estimates, agricultural subsidy allocations, and food security policy formulation. The household-operated land management model leads to a highly fragmented and heterogeneous agricultural landscape; therefore, fine crop mapping in smallholder agricultural areas remains challenging. By using very high spatial resolution (VHSR) images, this study aimed to explore parcel-level crop mapping methods using the case of a typical smallholder agricultural area in Wuhan, China. Object-based image analysis techniques as well as random forest (RF) and support vector machine (SVM) classifiers were used to classify WorldView-2 (WV2) images into eight crop-level agricultural land use categories. Several classification models were built using the combination of two classifiers and different image features, including spectral, geometrical, and textural features. The results showed that the classification model using the RF classifier and all 27 selected features had the highest accuracy, with an overall accuracy of 80.04% and a kappa value of 0.78; specifically, the user’s and producer’s accuracies of rice, cotton, lotus, bare paddy field and bare upland field exceeded 80%. We found that the performance of the RF and SVM classifiers was generally comparable, although as the input features increased, the accuracy of the RF was slightly higher than that of the SVM. The use of spatial features, such as the gray level cooccurrence matrix (GLCM) standard deviation, GLCM correlation, and area of image objects, could help improve the accuracy of parcel-level crop mapping. Our research confirmed the practical value of single-temporal VHRS images and RF classifiers in mapping parcel-level crops in complex agricultural areas. This framework provides a methodological reference for accurately monitoring crop distribution in smallholder agriculture areas to support the development of local precision agriculture." @default.
- W3040270067 created "2020-07-10" @default.
- W3040270067 creator A5017628382 @default.
- W3040270067 creator A5029360035 @default.
- W3040270067 creator A5032062559 @default.
- W3040270067 creator A5053440983 @default.
- W3040270067 date "2020-08-01" @default.
- W3040270067 modified "2023-10-17" @default.
- W3040270067 title "Parcel-level mapping of crops in a smallholder agricultural area: A case of central China using single-temporal VHSR imagery" @default.
- W3040270067 cites W1981755063 @default.
- W3040270067 cites W1984792953 @default.
- W3040270067 cites W1986738039 @default.
- W3040270067 cites W1991361881 @default.
- W3040270067 cites W2006690683 @default.
- W3040270067 cites W2046113982 @default.
- W3040270067 cites W2075415359 @default.
- W3040270067 cites W2114926945 @default.
- W3040270067 cites W2156665896 @default.
- W3040270067 cites W2166020598 @default.
- W3040270067 cites W2312489378 @default.
- W3040270067 cites W2343185210 @default.
- W3040270067 cites W2521939876 @default.
- W3040270067 cites W2531168480 @default.
- W3040270067 cites W2584703928 @default.
- W3040270067 cites W2590379360 @default.
- W3040270067 cites W2595044712 @default.
- W3040270067 cites W2612144337 @default.
- W3040270067 cites W2801083736 @default.
- W3040270067 cites W2809305579 @default.
- W3040270067 cites W2814877824 @default.
- W3040270067 cites W2905254777 @default.
- W3040270067 cites W2911964244 @default.
- W3040270067 cites W2915254566 @default.
- W3040270067 cites W2918101442 @default.
- W3040270067 cites W2983217144 @default.
- W3040270067 cites W3001402238 @default.
- W3040270067 cites W3021104014 @default.
- W3040270067 doi "https://doi.org/10.1016/j.compag.2020.105581" @default.
- W3040270067 hasPublicationYear "2020" @default.
- W3040270067 type Work @default.
- W3040270067 sameAs 3040270067 @default.
- W3040270067 citedByCount "17" @default.
- W3040270067 countsByYear W30402700672020 @default.
- W3040270067 countsByYear W30402700672021 @default.
- W3040270067 countsByYear W30402700672022 @default.
- W3040270067 countsByYear W30402700672023 @default.
- W3040270067 crossrefType "journal-article" @default.
- W3040270067 hasAuthorship W3040270067A5017628382 @default.
- W3040270067 hasAuthorship W3040270067A5029360035 @default.
- W3040270067 hasAuthorship W3040270067A5032062559 @default.
- W3040270067 hasAuthorship W3040270067A5053440983 @default.
- W3040270067 hasConcept C118518473 @default.
- W3040270067 hasConcept C12267149 @default.
- W3040270067 hasConcept C127413603 @default.
- W3040270067 hasConcept C138602881 @default.
- W3040270067 hasConcept C153180895 @default.
- W3040270067 hasConcept C154945302 @default.
- W3040270067 hasConcept C166957645 @default.
- W3040270067 hasConcept C169258074 @default.
- W3040270067 hasConcept C205649164 @default.
- W3040270067 hasConcept C41008148 @default.
- W3040270067 hasConcept C502990516 @default.
- W3040270067 hasConcept C62649853 @default.
- W3040270067 hasConcept C88463610 @default.
- W3040270067 hasConcept C95623464 @default.
- W3040270067 hasConceptScore W3040270067C118518473 @default.
- W3040270067 hasConceptScore W3040270067C12267149 @default.
- W3040270067 hasConceptScore W3040270067C127413603 @default.
- W3040270067 hasConceptScore W3040270067C138602881 @default.
- W3040270067 hasConceptScore W3040270067C153180895 @default.
- W3040270067 hasConceptScore W3040270067C154945302 @default.
- W3040270067 hasConceptScore W3040270067C166957645 @default.
- W3040270067 hasConceptScore W3040270067C169258074 @default.
- W3040270067 hasConceptScore W3040270067C205649164 @default.
- W3040270067 hasConceptScore W3040270067C41008148 @default.
- W3040270067 hasConceptScore W3040270067C502990516 @default.
- W3040270067 hasConceptScore W3040270067C62649853 @default.
- W3040270067 hasConceptScore W3040270067C88463610 @default.
- W3040270067 hasConceptScore W3040270067C95623464 @default.
- W3040270067 hasFunder F4320321001 @default.
- W3040270067 hasFunder F4320321106 @default.
- W3040270067 hasFunder F4320322815 @default.
- W3040270067 hasFunder F4320327557 @default.
- W3040270067 hasFunder F4320335787 @default.
- W3040270067 hasLocation W30402700671 @default.
- W3040270067 hasOpenAccess W3040270067 @default.
- W3040270067 hasPrimaryLocation W30402700671 @default.
- W3040270067 hasRelatedWork W2004826645 @default.
- W3040270067 hasRelatedWork W2551890981 @default.
- W3040270067 hasRelatedWork W2889302474 @default.
- W3040270067 hasRelatedWork W2955796858 @default.
- W3040270067 hasRelatedWork W3135818052 @default.
- W3040270067 hasRelatedWork W3160713586 @default.
- W3040270067 hasRelatedWork W4200112873 @default.
- W3040270067 hasRelatedWork W4205685985 @default.
- W3040270067 hasRelatedWork W4224941037 @default.
- W3040270067 hasRelatedWork W3128021027 @default.
- W3040270067 hasVolume "175" @default.