Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040281504> ?p ?o ?g. }
- W3040281504 abstract "Abstract Fish, being a good source of nutrients, is often cooked by different methods before consumption, which affect the beneficial quality detrimentally. In this study, Catla catla , and mustard oil are selected as representative of fish and cooking oil for frying, respectively, because of their agricultural importance and worldwide demand. Extensive experiments are performed varying the effective processing variables of conventional frying viz., temperature (140 °C‐240 °C), time (5 min–20 min) and oil amount (25 ml/kg of fish‐100 ml/kg of fish) to correlate the drastic reduction of the nutritional quality indices, that is, ω‐3/ω‐6 and cis/trans‐fatty acids (FAs) profiles of fish after frying. To establish a nonlinear correlation between these inputs and outputs, an exhaustive search of all available artificial neural network (ANN) algorithms and activation functions is executed for the development of a model. The hybrid robust process approach integrating ANN with differential evolution (DE) and simulated annealing (SA) are employed to optimize the cooking parameters for regaining nutritional impact. After frying ω‐3/ω‐6 and cis/trans‐FAs ratio deteriorated by 76.65% and 92.68%, respectively, than the fresh samples. The ANN‐DE and ANN‐SA formalism efficiently enhanced these nutritional parameters up to 33.18% and 79%, respectively. Practical applications The present study applied artificial neural network (ANN) as an advanced alternative modeling tool to propose a generalized nonlinear correlation between temperature, time, oil amount, and nutritional values, that is, ω‐3/ω‐6 and cis/trans‐fatty acids (FAs) profiles of fried fish. Frying time provided a strong impact on food nutrition compared to other two input variables. Frying process detrimentally affected both the nutritional indices, that is, ω‐3/ω‐6 and cis/trans‐FAs profiles. The meta‐heuristic, stochastic optimization algorithms, namely differential evolution and simulated annealing along with ANN‐based processed model were implemented successfully to tune the cooking parameters, so that food quality indices of fish improved again to maximum value. The artificial intelligence modeling, along with optimizing methodology based parameters tuning approach described here is generic and can be advantageously extended to other experimentation of food process engineering. Besides, the finding of this study will benefit common people also." @default.
- W3040281504 created "2020-07-10" @default.
- W3040281504 creator A5042240859 @default.
- W3040281504 creator A5042270852 @default.
- W3040281504 creator A5059739093 @default.
- W3040281504 creator A5081543915 @default.
- W3040281504 date "2020-06-30" @default.
- W3040281504 modified "2023-10-16" @default.
- W3040281504 title "Modeling and optimization of cooking process parameters to improve the nutritional profile of fried fish by robust hybrid artificial intelligence approach" @default.
- W3040281504 cites W1519405745 @default.
- W3040281504 cites W1968528693 @default.
- W3040281504 cites W1970339193 @default.
- W3040281504 cites W1972771065 @default.
- W3040281504 cites W1979807883 @default.
- W3040281504 cites W1982875758 @default.
- W3040281504 cites W2005686363 @default.
- W3040281504 cites W2005713486 @default.
- W3040281504 cites W2009346130 @default.
- W3040281504 cites W2020906869 @default.
- W3040281504 cites W2029762759 @default.
- W3040281504 cites W2041141493 @default.
- W3040281504 cites W2046603016 @default.
- W3040281504 cites W2054417500 @default.
- W3040281504 cites W2056738352 @default.
- W3040281504 cites W2063261821 @default.
- W3040281504 cites W2063992521 @default.
- W3040281504 cites W2072932343 @default.
- W3040281504 cites W2109115823 @default.
- W3040281504 cites W2128452997 @default.
- W3040281504 cites W2133278150 @default.
- W3040281504 cites W2141486452 @default.
- W3040281504 cites W2152022848 @default.
- W3040281504 cites W2168526937 @default.
- W3040281504 cites W2335238507 @default.
- W3040281504 cites W2419371633 @default.
- W3040281504 cites W2529519274 @default.
- W3040281504 cites W2594265248 @default.
- W3040281504 cites W2597054569 @default.
- W3040281504 cites W2606248873 @default.
- W3040281504 cites W2675221391 @default.
- W3040281504 cites W2748941820 @default.
- W3040281504 cites W2783394820 @default.
- W3040281504 cites W2783916190 @default.
- W3040281504 cites W2886397328 @default.
- W3040281504 cites W2887161686 @default.
- W3040281504 cites W2922267890 @default.
- W3040281504 cites W2938564402 @default.
- W3040281504 cites W2943623935 @default.
- W3040281504 cites W2954411826 @default.
- W3040281504 cites W4233611177 @default.
- W3040281504 doi "https://doi.org/10.1111/jfpe.13478" @default.
- W3040281504 hasPublicationYear "2020" @default.
- W3040281504 type Work @default.
- W3040281504 sameAs 3040281504 @default.
- W3040281504 citedByCount "9" @default.
- W3040281504 countsByYear W30402815042021 @default.
- W3040281504 countsByYear W30402815042022 @default.
- W3040281504 countsByYear W30402815042023 @default.
- W3040281504 crossrefType "journal-article" @default.
- W3040281504 hasAuthorship W3040281504A5042240859 @default.
- W3040281504 hasAuthorship W3040281504A5042270852 @default.
- W3040281504 hasAuthorship W3040281504A5059739093 @default.
- W3040281504 hasAuthorship W3040281504A5081543915 @default.
- W3040281504 hasConcept C142796444 @default.
- W3040281504 hasConcept C154945302 @default.
- W3040281504 hasConcept C178790620 @default.
- W3040281504 hasConcept C185592680 @default.
- W3040281504 hasConcept C2776463394 @default.
- W3040281504 hasConcept C2779946292 @default.
- W3040281504 hasConcept C2780996670 @default.
- W3040281504 hasConcept C2909208804 @default.
- W3040281504 hasConcept C2994459887 @default.
- W3040281504 hasConcept C31903555 @default.
- W3040281504 hasConcept C33923547 @default.
- W3040281504 hasConcept C41008148 @default.
- W3040281504 hasConcept C505870484 @default.
- W3040281504 hasConcept C50644808 @default.
- W3040281504 hasConcept C86803240 @default.
- W3040281504 hasConceptScore W3040281504C142796444 @default.
- W3040281504 hasConceptScore W3040281504C154945302 @default.
- W3040281504 hasConceptScore W3040281504C178790620 @default.
- W3040281504 hasConceptScore W3040281504C185592680 @default.
- W3040281504 hasConceptScore W3040281504C2776463394 @default.
- W3040281504 hasConceptScore W3040281504C2779946292 @default.
- W3040281504 hasConceptScore W3040281504C2780996670 @default.
- W3040281504 hasConceptScore W3040281504C2909208804 @default.
- W3040281504 hasConceptScore W3040281504C2994459887 @default.
- W3040281504 hasConceptScore W3040281504C31903555 @default.
- W3040281504 hasConceptScore W3040281504C33923547 @default.
- W3040281504 hasConceptScore W3040281504C41008148 @default.
- W3040281504 hasConceptScore W3040281504C505870484 @default.
- W3040281504 hasConceptScore W3040281504C50644808 @default.
- W3040281504 hasConceptScore W3040281504C86803240 @default.
- W3040281504 hasIssue "9" @default.
- W3040281504 hasLocation W30402815041 @default.
- W3040281504 hasOpenAccess W3040281504 @default.
- W3040281504 hasPrimaryLocation W30402815041 @default.
- W3040281504 hasRelatedWork W2339820905 @default.
- W3040281504 hasRelatedWork W2560913431 @default.
- W3040281504 hasRelatedWork W2774628312 @default.