Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040321336> ?p ?o ?g. }
- W3040321336 endingPage "4400" @default.
- W3040321336 startingPage "4391" @default.
- W3040321336 abstract "A novel approach of applying deep reinforcement learning to an RF pulse design is introduced. This method, which is referred to as DeepRFSLR, is designed to minimize the peak amplitude or, equivalently, minimize the pulse duration of a multiband refocusing pulse generated by the Shinar Le-Roux (SLR) algorithm. In the method, the root pattern of SLR polynomial, which determines the RF pulse shape, is optimized by iterative applications of deep reinforcement learning and greedy tree search. When tested for the designs of the multiband pulses with three and seven slices, DeepRFSLR demonstrated improved performance compared to conventional methods, generating shorter duration RF pulses in shorter computational time. In the experiments, the RF pulse from DeepRFSLR produced a slice profile similar to the minimum-phase SLR RF pulse and the profiles matched to that of the computer simulation. Our approach suggests a new way of designing an RF by applying a machine learning algorithm, demonstrating a “machine-designed” MRI sequence." @default.
- W3040321336 created "2020-07-10" @default.
- W3040321336 creator A5002164089 @default.
- W3040321336 creator A5003645465 @default.
- W3040321336 creator A5021528859 @default.
- W3040321336 creator A5064772845 @default.
- W3040321336 creator A5065577370 @default.
- W3040321336 creator A5066090746 @default.
- W3040321336 date "2020-12-01" @default.
- W3040321336 modified "2023-10-14" @default.
- W3040321336 title "Deep Reinforcement Learning Designed Shinnar-Le Roux RF Pulse Using Root-Flipping: DeepRF<sub>SLR</sub>" @default.
- W3040321336 cites W1897821276 @default.
- W3040321336 cites W1929452268 @default.
- W3040321336 cites W1933150758 @default.
- W3040321336 cites W1973010030 @default.
- W3040321336 cites W1996023265 @default.
- W3040321336 cites W2007294293 @default.
- W3040321336 cites W2071973680 @default.
- W3040321336 cites W2082693610 @default.
- W3040321336 cites W2094953664 @default.
- W3040321336 cites W2099618002 @default.
- W3040321336 cites W2119717200 @default.
- W3040321336 cites W2132518315 @default.
- W3040321336 cites W2145339207 @default.
- W3040321336 cites W2153148631 @default.
- W3040321336 cites W2155012132 @default.
- W3040321336 cites W2156528433 @default.
- W3040321336 cites W2161044358 @default.
- W3040321336 cites W2165698076 @default.
- W3040321336 cites W2169180452 @default.
- W3040321336 cites W2257979135 @default.
- W3040321336 cites W2442117232 @default.
- W3040321336 cites W2578373878 @default.
- W3040321336 cites W2791695392 @default.
- W3040321336 cites W2798456213 @default.
- W3040321336 cites W2916160219 @default.
- W3040321336 cites W2962723798 @default.
- W3040321336 cites W2963167310 @default.
- W3040321336 cites W2988907398 @default.
- W3040321336 doi "https://doi.org/10.1109/tmi.2020.3018508" @default.
- W3040321336 hasPublicationYear "2020" @default.
- W3040321336 type Work @default.
- W3040321336 sameAs 3040321336 @default.
- W3040321336 citedByCount "4" @default.
- W3040321336 countsByYear W30403213362022 @default.
- W3040321336 countsByYear W30403213362023 @default.
- W3040321336 crossrefType "journal-article" @default.
- W3040321336 hasAuthorship W3040321336A5002164089 @default.
- W3040321336 hasAuthorship W3040321336A5003645465 @default.
- W3040321336 hasAuthorship W3040321336A5021528859 @default.
- W3040321336 hasAuthorship W3040321336A5064772845 @default.
- W3040321336 hasAuthorship W3040321336A5065577370 @default.
- W3040321336 hasAuthorship W3040321336A5066090746 @default.
- W3040321336 hasBestOaLocation W30403213362 @default.
- W3040321336 hasConcept C113174947 @default.
- W3040321336 hasConcept C11413529 @default.
- W3040321336 hasConcept C120665830 @default.
- W3040321336 hasConcept C121332964 @default.
- W3040321336 hasConcept C134306372 @default.
- W3040321336 hasConcept C154945302 @default.
- W3040321336 hasConcept C169150495 @default.
- W3040321336 hasConcept C180205008 @default.
- W3040321336 hasConcept C182155053 @default.
- W3040321336 hasConcept C2780167933 @default.
- W3040321336 hasConcept C33923547 @default.
- W3040321336 hasConcept C41008148 @default.
- W3040321336 hasConcept C46141821 @default.
- W3040321336 hasConcept C520434653 @default.
- W3040321336 hasConcept C74064498 @default.
- W3040321336 hasConcept C76155785 @default.
- W3040321336 hasConcept C94915269 @default.
- W3040321336 hasConcept C97541855 @default.
- W3040321336 hasConceptScore W3040321336C113174947 @default.
- W3040321336 hasConceptScore W3040321336C11413529 @default.
- W3040321336 hasConceptScore W3040321336C120665830 @default.
- W3040321336 hasConceptScore W3040321336C121332964 @default.
- W3040321336 hasConceptScore W3040321336C134306372 @default.
- W3040321336 hasConceptScore W3040321336C154945302 @default.
- W3040321336 hasConceptScore W3040321336C169150495 @default.
- W3040321336 hasConceptScore W3040321336C180205008 @default.
- W3040321336 hasConceptScore W3040321336C182155053 @default.
- W3040321336 hasConceptScore W3040321336C2780167933 @default.
- W3040321336 hasConceptScore W3040321336C33923547 @default.
- W3040321336 hasConceptScore W3040321336C41008148 @default.
- W3040321336 hasConceptScore W3040321336C46141821 @default.
- W3040321336 hasConceptScore W3040321336C520434653 @default.
- W3040321336 hasConceptScore W3040321336C74064498 @default.
- W3040321336 hasConceptScore W3040321336C76155785 @default.
- W3040321336 hasConceptScore W3040321336C94915269 @default.
- W3040321336 hasConceptScore W3040321336C97541855 @default.
- W3040321336 hasFunder F4320321292 @default.
- W3040321336 hasFunder F4320322120 @default.
- W3040321336 hasFunder F4320332195 @default.
- W3040321336 hasIssue "12" @default.
- W3040321336 hasLocation W30403213361 @default.
- W3040321336 hasLocation W30403213362 @default.
- W3040321336 hasLocation W30403213363 @default.
- W3040321336 hasOpenAccess W3040321336 @default.