Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040378626> ?p ?o ?g. }
- W3040378626 abstract "ABSTRACT Introduction Depression and diabetes are highly disabling diseases with a high prevalence and high rate of comorbidity, particularly in low-income ethnic minority patients. Though comorbidity increases the risk of adverse outcomes and mortality, most clinical interventions target these diseases separately. Increasing physical activity might be effective to simultaneously lower depressive symptoms and improve glycemic control. Self-management apps are a cost-effective, scalable and easy access treatment to increase physical activity. However, cutting-edge technological applications often do not reach vulnerable populations and are not tailored to an individual’s behavior and characteristics. Tailoring of interventions using machine learning methods likely increases the effectiveness of the intervention. Methods and analysis In a three-arm randomized controlled trial we will examine the effect of a text-messaging smartphone application to encourage physical activity in low-income ethnic minority patients with comorbid diabetes and depression. The adaptive intervention group receives messages chosen from different messaging banks by a reinforcement learning algorithm. The uniform random intervention group receives the same messages, but chosen from the messaging banks with equal probabilities. The control group receives a weekly mood message. We aim to recruit 276 adults from primary care clinics aged 18 to 75 years who have been diagnosed with current diabetes and show elevated depressive symptoms (PHQ-8 >5). We will compare passively collected daily step counts, self-report PHQ-8 and most recent HbA1c from medical records at baseline and at intervention completion at 6-month follow-up. Ethics and dissemination The Institutional Review Board at the University of California San Francisco approved this study (IRB: 17-22608). We plan to submit manuscripts describing our User Designed Methods and testing of the adaptive learning algorithm and will submit the results of the trial for publication in peer-reviewed journals and presentations at (inter)-national scientific meetings. Registration clinicaltrials.gov: NCT03490253 ; pre-results Article Summary Strengths and Limitations Novel approach of targeting diabetes and depressive symptoms using a smartphone application Ability to compare adaptive messaging for increasing physical activity to messages delivered with equal probabilities Testing of a smartphone application integrated within primary care settings in a low-income vulnerable patient population Longitudinal design with 6-month follow-up enables assessing intervention effects over time Challenges of this trial include supporting users in key behavior change in an automated manner with minimal in-person support" @default.
- W3040378626 created "2020-07-10" @default.
- W3040378626 creator A5002159899 @default.
- W3040378626 creator A5007417529 @default.
- W3040378626 creator A5027695955 @default.
- W3040378626 creator A5035375035 @default.
- W3040378626 creator A5036008511 @default.
- W3040378626 creator A5041049622 @default.
- W3040378626 creator A5048098394 @default.
- W3040378626 creator A5050618420 @default.
- W3040378626 creator A5053644463 @default.
- W3040378626 creator A5060616224 @default.
- W3040378626 creator A5069476228 @default.
- W3040378626 creator A5074116667 @default.
- W3040378626 creator A5081827594 @default.
- W3040378626 creator A5084445671 @default.
- W3040378626 creator A5084545416 @default.
- W3040378626 date "2020-07-01" @default.
- W3040378626 modified "2023-09-23" @default.
- W3040378626 title "An mHealth app using machine learning to increase physical activity in diabetes and depression: clinical trial protocol for the DIAMANTE Study" @default.
- W3040378626 cites W2016294066 @default.
- W3040378626 cites W2017768678 @default.
- W3040378626 cites W2018614895 @default.
- W3040378626 cites W2028766465 @default.
- W3040378626 cites W2032191478 @default.
- W3040378626 cites W2044333539 @default.
- W3040378626 cites W2068561834 @default.
- W3040378626 cites W2104983431 @default.
- W3040378626 cites W2115243911 @default.
- W3040378626 cites W2121833483 @default.
- W3040378626 cites W2126459458 @default.
- W3040378626 cites W2131635313 @default.
- W3040378626 cites W2136608905 @default.
- W3040378626 cites W2162696461 @default.
- W3040378626 cites W2166023752 @default.
- W3040378626 cites W2383477184 @default.
- W3040378626 cites W2523153599 @default.
- W3040378626 cites W2552305464 @default.
- W3040378626 cites W2734936460 @default.
- W3040378626 cites W2751884637 @default.
- W3040378626 cites W2756328368 @default.
- W3040378626 cites W2783368859 @default.
- W3040378626 cites W2785014992 @default.
- W3040378626 cites W2790479710 @default.
- W3040378626 cites W2802588208 @default.
- W3040378626 cites W2805973436 @default.
- W3040378626 cites W2809129970 @default.
- W3040378626 cites W2887074077 @default.
- W3040378626 cites W2889406366 @default.
- W3040378626 cites W2904460099 @default.
- W3040378626 cites W2913897984 @default.
- W3040378626 cites W2926287779 @default.
- W3040378626 cites W2946235112 @default.
- W3040378626 cites W2976277449 @default.
- W3040378626 cites W2991170583 @default.
- W3040378626 cites W3102969100 @default.
- W3040378626 cites W4211241272 @default.
- W3040378626 doi "https://doi.org/10.1101/2020.06.29.20142943" @default.
- W3040378626 hasPublicationYear "2020" @default.
- W3040378626 type Work @default.
- W3040378626 sameAs 3040378626 @default.
- W3040378626 citedByCount "2" @default.
- W3040378626 countsByYear W30403786262020 @default.
- W3040378626 crossrefType "posted-content" @default.
- W3040378626 hasAuthorship W3040378626A5002159899 @default.
- W3040378626 hasAuthorship W3040378626A5007417529 @default.
- W3040378626 hasAuthorship W3040378626A5027695955 @default.
- W3040378626 hasAuthorship W3040378626A5035375035 @default.
- W3040378626 hasAuthorship W3040378626A5036008511 @default.
- W3040378626 hasAuthorship W3040378626A5041049622 @default.
- W3040378626 hasAuthorship W3040378626A5048098394 @default.
- W3040378626 hasAuthorship W3040378626A5050618420 @default.
- W3040378626 hasAuthorship W3040378626A5053644463 @default.
- W3040378626 hasAuthorship W3040378626A5060616224 @default.
- W3040378626 hasAuthorship W3040378626A5069476228 @default.
- W3040378626 hasAuthorship W3040378626A5074116667 @default.
- W3040378626 hasAuthorship W3040378626A5081827594 @default.
- W3040378626 hasAuthorship W3040378626A5084445671 @default.
- W3040378626 hasAuthorship W3040378626A5084545416 @default.
- W3040378626 hasBestOaLocation W30403786261 @default.
- W3040378626 hasConcept C118552586 @default.
- W3040378626 hasConcept C126322002 @default.
- W3040378626 hasConcept C134018914 @default.
- W3040378626 hasConcept C139719470 @default.
- W3040378626 hasConcept C162324750 @default.
- W3040378626 hasConcept C168563851 @default.
- W3040378626 hasConcept C1862650 @default.
- W3040378626 hasConcept C27415008 @default.
- W3040378626 hasConcept C2776867660 @default.
- W3040378626 hasConcept C2779159551 @default.
- W3040378626 hasConcept C2779363104 @default.
- W3040378626 hasConcept C2780473172 @default.
- W3040378626 hasConcept C2780665704 @default.
- W3040378626 hasConcept C2780733359 @default.
- W3040378626 hasConcept C535046627 @default.
- W3040378626 hasConcept C555293320 @default.
- W3040378626 hasConcept C70410870 @default.
- W3040378626 hasConcept C71924100 @default.
- W3040378626 hasConceptScore W3040378626C118552586 @default.
- W3040378626 hasConceptScore W3040378626C126322002 @default.