Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040517328> ?p ?o ?g. }
- W3040517328 endingPage "271" @default.
- W3040517328 startingPage "253" @default.
- W3040517328 abstract "Hyperspectral Images (HSI) require sufficient labeled samples and a complex classifier to identify an area. Support Vector Machine (SVM) is one of the most competent algorithms in this field. Neural Networks (NN) is another approach used for classification problems, and both have been widely proposed in the literature. The Convolutional Neural Network (CNN) method has also received significant attention in the deep learning field recently. Nevertheless, during NN training, the overfitting problem may cause continuous dragging of the algorithm toward larger error. In this case, a regularization technique is needed to constitute the most useful decision boundary. The Eigenvalue Decay method is one of the regularization techniques that may be applied for HSI. This study investigates the performance of Multilayer Perceptron trained with an Eigenvalue Decay (MLP-ED) algorithm for HSI classification. The SVM, CNN with Pixel-Pair and CNN-Ensemble methods are used as comparison algorithms for MLP-ED performance assessment. All methods were tested with 3 different high-resolution HSI datasets. While SVM is one of the classic classifiers, and the 2 new CNN algorithms show high performance, the proposed MLP-ED method has more computational efficiency and achieves higher success than the others do." @default.
- W3040517328 created "2020-07-10" @default.
- W3040517328 creator A5005225415 @default.
- W3040517328 creator A5046201757 @default.
- W3040517328 creator A5080247687 @default.
- W3040517328 date "2020-05-03" @default.
- W3040517328 modified "2023-09-27" @default.
- W3040517328 title "Hyperspectral Image Classification Based on Multilayer Perceptron Trained with Eigenvalue Decay" @default.
- W3040517328 cites W1964463693 @default.
- W3040517328 cites W1978091994 @default.
- W3040517328 cites W1992477407 @default.
- W3040517328 cites W1998093007 @default.
- W3040517328 cites W2011084767 @default.
- W3040517328 cites W2017233787 @default.
- W3040517328 cites W2038083981 @default.
- W3040517328 cites W2059330250 @default.
- W3040517328 cites W2063907334 @default.
- W3040517328 cites W2107131609 @default.
- W3040517328 cites W2121338139 @default.
- W3040517328 cites W2149298154 @default.
- W3040517328 cites W2153635508 @default.
- W3040517328 cites W2157094216 @default.
- W3040517328 cites W2170505850 @default.
- W3040517328 cites W2172000360 @default.
- W3040517328 cites W2293583572 @default.
- W3040517328 cites W2343770676 @default.
- W3040517328 cites W2470953135 @default.
- W3040517328 cites W2520632654 @default.
- W3040517328 cites W2541546981 @default.
- W3040517328 cites W2546601745 @default.
- W3040517328 cites W2548791488 @default.
- W3040517328 cites W2608381478 @default.
- W3040517328 cites W2709613980 @default.
- W3040517328 cites W2766919625 @default.
- W3040517328 cites W2782165720 @default.
- W3040517328 cites W2788553534 @default.
- W3040517328 cites W2800598084 @default.
- W3040517328 cites W2890366953 @default.
- W3040517328 cites W2897245644 @default.
- W3040517328 cites W2900653566 @default.
- W3040517328 cites W2901397428 @default.
- W3040517328 cites W2904996348 @default.
- W3040517328 cites W2909214391 @default.
- W3040517328 cites W2910438869 @default.
- W3040517328 cites W2912371366 @default.
- W3040517328 cites W2919115771 @default.
- W3040517328 cites W2920404961 @default.
- W3040517328 cites W2922156364 @default.
- W3040517328 cites W2938105415 @default.
- W3040517328 cites W2938594308 @default.
- W3040517328 cites W2945989246 @default.
- W3040517328 cites W2948236978 @default.
- W3040517328 cites W2949756495 @default.
- W3040517328 cites W2954424278 @default.
- W3040517328 cites W2956102952 @default.
- W3040517328 cites W2964383635 @default.
- W3040517328 cites W2981394989 @default.
- W3040517328 cites W3001656420 @default.
- W3040517328 cites W3013914999 @default.
- W3040517328 cites W4234876869 @default.
- W3040517328 cites W4239510810 @default.
- W3040517328 doi "https://doi.org/10.1080/07038992.2020.1780572" @default.
- W3040517328 hasPublicationYear "2020" @default.
- W3040517328 type Work @default.
- W3040517328 sameAs 3040517328 @default.
- W3040517328 citedByCount "3" @default.
- W3040517328 countsByYear W30405173282022 @default.
- W3040517328 crossrefType "journal-article" @default.
- W3040517328 hasAuthorship W3040517328A5005225415 @default.
- W3040517328 hasAuthorship W3040517328A5046201757 @default.
- W3040517328 hasAuthorship W3040517328A5080247687 @default.
- W3040517328 hasConcept C11413529 @default.
- W3040517328 hasConcept C119857082 @default.
- W3040517328 hasConcept C121332964 @default.
- W3040517328 hasConcept C12267149 @default.
- W3040517328 hasConcept C153180895 @default.
- W3040517328 hasConcept C154945302 @default.
- W3040517328 hasConcept C158693339 @default.
- W3040517328 hasConcept C159078339 @default.
- W3040517328 hasConcept C160633673 @default.
- W3040517328 hasConcept C179717631 @default.
- W3040517328 hasConcept C202444582 @default.
- W3040517328 hasConcept C22019652 @default.
- W3040517328 hasConcept C2776135515 @default.
- W3040517328 hasConcept C33923547 @default.
- W3040517328 hasConcept C41008148 @default.
- W3040517328 hasConcept C42023084 @default.
- W3040517328 hasConcept C50644808 @default.
- W3040517328 hasConcept C62520636 @default.
- W3040517328 hasConcept C81363708 @default.
- W3040517328 hasConcept C95623464 @default.
- W3040517328 hasConcept C9652623 @default.
- W3040517328 hasConceptScore W3040517328C11413529 @default.
- W3040517328 hasConceptScore W3040517328C119857082 @default.
- W3040517328 hasConceptScore W3040517328C121332964 @default.
- W3040517328 hasConceptScore W3040517328C12267149 @default.
- W3040517328 hasConceptScore W3040517328C153180895 @default.
- W3040517328 hasConceptScore W3040517328C154945302 @default.