Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040536474> ?p ?o ?g. }
- W3040536474 abstract "Boltzmann machine is a powerful tool for modeling probability distributions that govern the training data. A thermal equilibrium state is typically used for Boltzmann machine learning to obtain a suitable probability distribution. The Boltzmann machine learning consists of calculating the gradient of the loss function given in terms of the thermal average, which is the most time consuming procedure. Here, we propose a method to implement the Boltzmann machine learning by using Noisy Intermediate-Scale Quantum (NISQ) devices. We prepare an initial pure state that contains all possible computational basis states with the same amplitude, and apply a variational imaginary time simulation. Readout of the state after the evolution in the computational basis approximates the probability distribution of the thermal equilibrium state that is used for the Boltzmann machine learning. We actually perform the numerical simulations of our scheme and confirm that the Boltzmann machine learning works well by our scheme." @default.
- W3040536474 created "2020-07-10" @default.
- W3040536474 creator A5009403828 @default.
- W3040536474 creator A5033532681 @default.
- W3040536474 creator A5040695947 @default.
- W3040536474 creator A5058182931 @default.
- W3040536474 creator A5061825230 @default.
- W3040536474 creator A5070107800 @default.
- W3040536474 creator A5070400810 @default.
- W3040536474 creator A5082360196 @default.
- W3040536474 date "2021-09-16" @default.
- W3040536474 modified "2023-10-02" @default.
- W3040536474 title "Boltzmann machine learning with a variational quantum algorithm" @default.
- W3040536474 cites W1964751685 @default.
- W3040536474 cites W1981783889 @default.
- W3040536474 cites W1988369744 @default.
- W3040536474 cites W2024857769 @default.
- W3040536474 cites W2031794121 @default.
- W3040536474 cites W2042492924 @default.
- W3040536474 cites W2046789550 @default.
- W3040536474 cites W2049371556 @default.
- W3040536474 cites W2064630666 @default.
- W3040536474 cites W2071709160 @default.
- W3040536474 cites W2100495367 @default.
- W3040536474 cites W2103794950 @default.
- W3040536474 cites W2103956991 @default.
- W3040536474 cites W2116064496 @default.
- W3040536474 cites W2136922672 @default.
- W3040536474 cites W2147768505 @default.
- W3040536474 cites W2156740722 @default.
- W3040536474 cites W2161685427 @default.
- W3040536474 cites W2257937122 @default.
- W3040536474 cites W2489886790 @default.
- W3040536474 cites W2562526363 @default.
- W3040536474 cites W2781738013 @default.
- W3040536474 cites W2784994528 @default.
- W3040536474 cites W2790388700 @default.
- W3040536474 cites W2885253165 @default.
- W3040536474 cites W2888094667 @default.
- W3040536474 cites W2902765729 @default.
- W3040536474 cites W2905003072 @default.
- W3040536474 cites W2907242142 @default.
- W3040536474 cites W2923370183 @default.
- W3040536474 cites W2945191606 @default.
- W3040536474 cites W2949453985 @default.
- W3040536474 cites W2951696038 @default.
- W3040536474 cites W2966171903 @default.
- W3040536474 cites W2971781434 @default.
- W3040536474 cites W2972223037 @default.
- W3040536474 cites W3034772724 @default.
- W3040536474 cites W3088131536 @default.
- W3040536474 cites W3088382764 @default.
- W3040536474 cites W3098581063 @default.
- W3040536474 cites W3098594497 @default.
- W3040536474 cites W3098768946 @default.
- W3040536474 cites W3100285554 @default.
- W3040536474 cites W3100459566 @default.
- W3040536474 cites W3100873882 @default.
- W3040536474 cites W3102941010 @default.
- W3040536474 cites W3103872322 @default.
- W3040536474 cites W3128504623 @default.
- W3040536474 cites W3128576672 @default.
- W3040536474 cites W3189250281 @default.
- W3040536474 doi "https://doi.org/10.1103/physreva.104.032413" @default.
- W3040536474 hasPublicationYear "2021" @default.
- W3040536474 type Work @default.
- W3040536474 sameAs 3040536474 @default.
- W3040536474 citedByCount "12" @default.
- W3040536474 countsByYear W30405364742021 @default.
- W3040536474 countsByYear W30405364742022 @default.
- W3040536474 countsByYear W30405364742023 @default.
- W3040536474 crossrefType "journal-article" @default.
- W3040536474 hasAuthorship W3040536474A5009403828 @default.
- W3040536474 hasAuthorship W3040536474A5033532681 @default.
- W3040536474 hasAuthorship W3040536474A5040695947 @default.
- W3040536474 hasAuthorship W3040536474A5058182931 @default.
- W3040536474 hasAuthorship W3040536474A5061825230 @default.
- W3040536474 hasAuthorship W3040536474A5070107800 @default.
- W3040536474 hasAuthorship W3040536474A5070400810 @default.
- W3040536474 hasAuthorship W3040536474A5082360196 @default.
- W3040536474 hasBestOaLocation W30405364742 @default.
- W3040536474 hasConcept C11413529 @default.
- W3040536474 hasConcept C119857082 @default.
- W3040536474 hasConcept C121332964 @default.
- W3040536474 hasConcept C121864883 @default.
- W3040536474 hasConcept C12426560 @default.
- W3040536474 hasConcept C154945302 @default.
- W3040536474 hasConcept C192576344 @default.
- W3040536474 hasConcept C193999330 @default.
- W3040536474 hasConcept C199354608 @default.
- W3040536474 hasConcept C21821499 @default.
- W3040536474 hasConcept C2524010 @default.
- W3040536474 hasConcept C33923547 @default.
- W3040536474 hasConcept C35304006 @default.
- W3040536474 hasConcept C41008148 @default.
- W3040536474 hasConcept C50644808 @default.
- W3040536474 hasConcept C62520636 @default.
- W3040536474 hasConceptScore W3040536474C11413529 @default.
- W3040536474 hasConceptScore W3040536474C119857082 @default.
- W3040536474 hasConceptScore W3040536474C121332964 @default.