Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040562414> ?p ?o ?g. }
- W3040562414 endingPage "99" @default.
- W3040562414 startingPage "83" @default.
- W3040562414 abstract "Supervisory control and data acquisition (SCADA) systems are industrial control systems that are used to monitor critical infrastructures such as airports, transport, health, and public services of national importance. These are cyber physical systems, which are increasingly integrated with networks and internet of things devices. However, this results in a larger attack surface for cyber threats, making it important to identify and thwart cyber-attacks by detecting anomalous network traffic patterns. Compared to other techniques, as well as detecting known attack patterns, machine learning can also detect new and evolving threats. Autoencoders are a type of neural network that generates a compressed representation of its input data and through reconstruction loss of inputs can help identify anomalous data. This paper proposes the use of autoencoders for unsupervised anomaly-based intrusion detection using an appropriate differentiating threshold from the loss distribution and demonstrate improvements in results compared to other techniques for SCADA gas pipeline dataset." @default.
- W3040562414 created "2020-07-10" @default.
- W3040562414 creator A5001342952 @default.
- W3040562414 creator A5074462398 @default.
- W3040562414 creator A5086773554 @default.
- W3040562414 date "2021-07-01" @default.
- W3040562414 modified "2023-10-16" @default.
- W3040562414 title "Autoencoder Based Anomaly Detection for SCADA Networks" @default.
- W3040562414 cites W1967903162 @default.
- W3040562414 cites W1970252573 @default.
- W3040562414 cites W1980323860 @default.
- W3040562414 cites W1989429174 @default.
- W3040562414 cites W2012446724 @default.
- W3040562414 cites W2013330146 @default.
- W3040562414 cites W2039427951 @default.
- W3040562414 cites W2064675550 @default.
- W3040562414 cites W2081544377 @default.
- W3040562414 cites W2087432251 @default.
- W3040562414 cites W2091236895 @default.
- W3040562414 cites W2092891061 @default.
- W3040562414 cites W2100495367 @default.
- W3040562414 cites W2108756230 @default.
- W3040562414 cites W2143559571 @default.
- W3040562414 cites W2162783010 @default.
- W3040562414 cites W2170505850 @default.
- W3040562414 cites W2244222752 @default.
- W3040562414 cites W2342408547 @default.
- W3040562414 cites W2402144811 @default.
- W3040562414 cites W2414564754 @default.
- W3040562414 cites W2476117158 @default.
- W3040562414 cites W2565516711 @default.
- W3040562414 cites W2727477768 @default.
- W3040562414 cites W2734718015 @default.
- W3040562414 cites W2736937187 @default.
- W3040562414 cites W2742481195 @default.
- W3040562414 cites W2753352458 @default.
- W3040562414 cites W2772008075 @default.
- W3040562414 cites W2779737813 @default.
- W3040562414 cites W2780476542 @default.
- W3040562414 cites W2888728157 @default.
- W3040562414 cites W2897330880 @default.
- W3040562414 cites W2968872200 @default.
- W3040562414 cites W3120740533 @default.
- W3040562414 cites W54330468 @default.
- W3040562414 doi "https://doi.org/10.4018/ijaiml.20210701.oa6" @default.
- W3040562414 hasPublicationYear "2021" @default.
- W3040562414 type Work @default.
- W3040562414 sameAs 3040562414 @default.
- W3040562414 citedByCount "5" @default.
- W3040562414 countsByYear W30405624142022 @default.
- W3040562414 countsByYear W30405624142023 @default.
- W3040562414 crossrefType "journal-article" @default.
- W3040562414 hasAuthorship W3040562414A5001342952 @default.
- W3040562414 hasAuthorship W3040562414A5074462398 @default.
- W3040562414 hasAuthorship W3040562414A5086773554 @default.
- W3040562414 hasBestOaLocation W30405624141 @default.
- W3040562414 hasConcept C101738243 @default.
- W3040562414 hasConcept C108583219 @default.
- W3040562414 hasConcept C111919701 @default.
- W3040562414 hasConcept C113863187 @default.
- W3040562414 hasConcept C119599485 @default.
- W3040562414 hasConcept C124101348 @default.
- W3040562414 hasConcept C127413603 @default.
- W3040562414 hasConcept C154945302 @default.
- W3040562414 hasConcept C179768478 @default.
- W3040562414 hasConcept C199360897 @default.
- W3040562414 hasConcept C201307755 @default.
- W3040562414 hasConcept C2775924081 @default.
- W3040562414 hasConcept C29852176 @default.
- W3040562414 hasConcept C35525427 @default.
- W3040562414 hasConcept C38652104 @default.
- W3040562414 hasConcept C40071531 @default.
- W3040562414 hasConcept C41008148 @default.
- W3040562414 hasConcept C43521106 @default.
- W3040562414 hasConcept C50644808 @default.
- W3040562414 hasConcept C739882 @default.
- W3040562414 hasConcept C79403827 @default.
- W3040562414 hasConceptScore W3040562414C101738243 @default.
- W3040562414 hasConceptScore W3040562414C108583219 @default.
- W3040562414 hasConceptScore W3040562414C111919701 @default.
- W3040562414 hasConceptScore W3040562414C113863187 @default.
- W3040562414 hasConceptScore W3040562414C119599485 @default.
- W3040562414 hasConceptScore W3040562414C124101348 @default.
- W3040562414 hasConceptScore W3040562414C127413603 @default.
- W3040562414 hasConceptScore W3040562414C154945302 @default.
- W3040562414 hasConceptScore W3040562414C179768478 @default.
- W3040562414 hasConceptScore W3040562414C199360897 @default.
- W3040562414 hasConceptScore W3040562414C201307755 @default.
- W3040562414 hasConceptScore W3040562414C2775924081 @default.
- W3040562414 hasConceptScore W3040562414C29852176 @default.
- W3040562414 hasConceptScore W3040562414C35525427 @default.
- W3040562414 hasConceptScore W3040562414C38652104 @default.
- W3040562414 hasConceptScore W3040562414C40071531 @default.
- W3040562414 hasConceptScore W3040562414C41008148 @default.
- W3040562414 hasConceptScore W3040562414C43521106 @default.
- W3040562414 hasConceptScore W3040562414C50644808 @default.
- W3040562414 hasConceptScore W3040562414C739882 @default.
- W3040562414 hasConceptScore W3040562414C79403827 @default.