Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040568084> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3040568084 endingPage "449" @default.
- W3040568084 startingPage "432" @default.
- W3040568084 abstract "Purpose Modern production facilities produce large amounts of data. The computational framework often referred to as big data analytics has greatly improved the capabilities of analyses of large data sets. Many manufacturing companies can now seize this opportunity to leverage their data to gain competitive advantages for continuous improvement. Six Sigma has been among the most popular approaches for continuous improvement. The data-driven nature of Six Sigma applied in a big data environment can provide competitive advantages. In the traditional Six Sigma implementation – define, measure, analyze, improve and control (DMAIC) problem-solving strategy where a human team defines a project ahead of data collection. This paper aims to propose a new Six Sigma approach that uses massive data generated to identify opportunities for continuous improvement projects in a manufacturing environment in addition to human input in a measure, define, analyze, improve and control (MDAIC) format. Design/methodology/approach The proposed Six Sigma strategy called MDAIC starts with data collection and process monitoring in a manufacturing environment using system-wide monitoring that standardizes continuous, attribute and profile data into comparable metrics in terms of “traffic lights.” The classifications into green, yellow and red lights are based on pre-control charts depending on how far a measurement is from its target. The proposed method monitors both process parameters and product quality data throughout a hierarchical production system over time. An attribute control chart is used to monitor system performances. As the proposed method is capable of identifying changed variables with both spatial and temporal spaces, Six Sigma teams can easily pinpoint the areas in need to initiate Six Sigma projects. Findings Based on a simulation study, the proposed method is capable of identifying variables that exhibit the biggest deviations from the target in the Measure step of a Six Sigma project. This provides suggestions of the candidates for the improvement section of the proposed MDAIC methodology. Originality/value This paper proposes a new approach for the identifications of projects for continuous improvement in a manufacturing environment. The proposed framework aims to monitor the entire production system that integrates all types of production variables and the product quality characteristics." @default.
- W3040568084 created "2020-07-10" @default.
- W3040568084 creator A5054112772 @default.
- W3040568084 creator A5079056906 @default.
- W3040568084 date "2020-07-03" @default.
- W3040568084 modified "2023-10-18" @default.
- W3040568084 title "MDAIC – a Six Sigma implementation strategy in big data environments" @default.
- W3040568084 cites W1978910696 @default.
- W3040568084 cites W2005936035 @default.
- W3040568084 cites W2042467242 @default.
- W3040568084 cites W2609996064 @default.
- W3040568084 cites W2729272282 @default.
- W3040568084 cites W2755566113 @default.
- W3040568084 cites W2772257716 @default.
- W3040568084 cites W2791684182 @default.
- W3040568084 cites W2858789335 @default.
- W3040568084 cites W2883756822 @default.
- W3040568084 cites W2884832773 @default.
- W3040568084 cites W2888459734 @default.
- W3040568084 cites W2914928858 @default.
- W3040568084 doi "https://doi.org/10.1108/ijlss-12-2019-0123" @default.
- W3040568084 hasPublicationYear "2020" @default.
- W3040568084 type Work @default.
- W3040568084 sameAs 3040568084 @default.
- W3040568084 citedByCount "8" @default.
- W3040568084 countsByYear W30405680842021 @default.
- W3040568084 countsByYear W30405680842022 @default.
- W3040568084 countsByYear W30405680842023 @default.
- W3040568084 crossrefType "journal-article" @default.
- W3040568084 hasAuthorship W3040568084A5054112772 @default.
- W3040568084 hasAuthorship W3040568084A5079056906 @default.
- W3040568084 hasConcept C111919701 @default.
- W3040568084 hasConcept C113644684 @default.
- W3040568084 hasConcept C117671659 @default.
- W3040568084 hasConcept C124101348 @default.
- W3040568084 hasConcept C127413603 @default.
- W3040568084 hasConcept C137335462 @default.
- W3040568084 hasConcept C13736549 @default.
- W3040568084 hasConcept C153083717 @default.
- W3040568084 hasConcept C154945302 @default.
- W3040568084 hasConcept C161272170 @default.
- W3040568084 hasConcept C196985124 @default.
- W3040568084 hasConcept C201995342 @default.
- W3040568084 hasConcept C205400985 @default.
- W3040568084 hasConcept C23119410 @default.
- W3040568084 hasConcept C2778139897 @default.
- W3040568084 hasConcept C2780009758 @default.
- W3040568084 hasConcept C41008148 @default.
- W3040568084 hasConcept C75684735 @default.
- W3040568084 hasConcept C98045186 @default.
- W3040568084 hasConceptScore W3040568084C111919701 @default.
- W3040568084 hasConceptScore W3040568084C113644684 @default.
- W3040568084 hasConceptScore W3040568084C117671659 @default.
- W3040568084 hasConceptScore W3040568084C124101348 @default.
- W3040568084 hasConceptScore W3040568084C127413603 @default.
- W3040568084 hasConceptScore W3040568084C137335462 @default.
- W3040568084 hasConceptScore W3040568084C13736549 @default.
- W3040568084 hasConceptScore W3040568084C153083717 @default.
- W3040568084 hasConceptScore W3040568084C154945302 @default.
- W3040568084 hasConceptScore W3040568084C161272170 @default.
- W3040568084 hasConceptScore W3040568084C196985124 @default.
- W3040568084 hasConceptScore W3040568084C201995342 @default.
- W3040568084 hasConceptScore W3040568084C205400985 @default.
- W3040568084 hasConceptScore W3040568084C23119410 @default.
- W3040568084 hasConceptScore W3040568084C2778139897 @default.
- W3040568084 hasConceptScore W3040568084C2780009758 @default.
- W3040568084 hasConceptScore W3040568084C41008148 @default.
- W3040568084 hasConceptScore W3040568084C75684735 @default.
- W3040568084 hasConceptScore W3040568084C98045186 @default.
- W3040568084 hasIssue "2" @default.
- W3040568084 hasLocation W30405680841 @default.
- W3040568084 hasOpenAccess W3040568084 @default.
- W3040568084 hasPrimaryLocation W30405680841 @default.
- W3040568084 hasRelatedWork W1753729891 @default.
- W3040568084 hasRelatedWork W1969848021 @default.
- W3040568084 hasRelatedWork W2079452862 @default.
- W3040568084 hasRelatedWork W2181408872 @default.
- W3040568084 hasRelatedWork W2255356877 @default.
- W3040568084 hasRelatedWork W2333476421 @default.
- W3040568084 hasRelatedWork W2598782405 @default.
- W3040568084 hasRelatedWork W3030179160 @default.
- W3040568084 hasRelatedWork W3040568084 @default.
- W3040568084 hasRelatedWork W4213355972 @default.
- W3040568084 hasVolume "12" @default.
- W3040568084 isParatext "false" @default.
- W3040568084 isRetracted "false" @default.
- W3040568084 magId "3040568084" @default.
- W3040568084 workType "article" @default.