Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040572287> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3040572287 endingPage "2024" @default.
- W3040572287 startingPage "1977" @default.
- W3040572287 abstract "Inspired by Ramsey’s theorem for pairs, Rival and Sands proved what we refer to as an <italic>inside/outside Ramsey theorem</italic>: every infinite graph <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains an infinite subset <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that every vertex of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is adjacent to precisely none, one, or infinitely many vertices of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We analyze the Rival–Sands theorem from the perspective of reverse mathematics and the Weihrauch degrees. In reverse mathematics, we find that the Rival–Sands theorem is equivalent to arithmetical comprehension and hence is stronger than Ramsey’s theorem for pairs. We also identify a weak form of the Rival–Sands theorem that is equivalent to Ramsey’s theorem for pairs. We turn to the Weihrauch degrees to give a finer analysis of the Rival–Sands theorem’s computational strength. We find that the Rival–Sands theorem is Weihrauch equivalent to the double jump of weak König’s lemma. We believe that the Rival–Sands theorem is the first natural theorem shown to exhibit exactly this strength. Furthermore, by combining our result with a result of Brattka and Rakotoniaina, we obtain that solving one instance of the Rival–Sands theorem exactly corresponds to simultaneously solving countably many instances of Ramsey’s theorem for pairs. Finally, we show that the uniform computational strength of the weak Rival–Sands theorem is weaker than that of Ramsey’s theorem for pairs by showing that a number of well-known consequences of Ramsey’s theorem for pairs do not Weihrauch reduce to the weak Rival–Sands theorem. We also address an apparent gap in the literature concerning the relationship between Weihrauch degrees corresponding to the ascending/descending sequence principle and the infinite pigeonhole principle." @default.
- W3040572287 created "2020-07-10" @default.
- W3040572287 creator A5067399811 @default.
- W3040572287 creator A5074399186 @default.
- W3040572287 creator A5089861556 @default.
- W3040572287 date "2021-12-23" @default.
- W3040572287 modified "2023-10-03" @default.
- W3040572287 title "An inside/outside Ramsey theorem and recursion theory" @default.
- W3040572287 cites W1560798351 @default.
- W3040572287 cites W1579696469 @default.
- W3040572287 cites W1757113349 @default.
- W3040572287 cites W1981894804 @default.
- W3040572287 cites W1996708658 @default.
- W3040572287 cites W2016125425 @default.
- W3040572287 cites W2018837422 @default.
- W3040572287 cites W2026779741 @default.
- W3040572287 cites W2055379543 @default.
- W3040572287 cites W2097686156 @default.
- W3040572287 cites W2102358420 @default.
- W3040572287 cites W2131443763 @default.
- W3040572287 cites W2144268026 @default.
- W3040572287 cites W2148962283 @default.
- W3040572287 cites W2474654837 @default.
- W3040572287 cites W2559546918 @default.
- W3040572287 cites W2610989903 @default.
- W3040572287 cites W2736063278 @default.
- W3040572287 cites W2962747934 @default.
- W3040572287 cites W2963693343 @default.
- W3040572287 cites W2963995856 @default.
- W3040572287 cites W2964070035 @default.
- W3040572287 cites W3098669794 @default.
- W3040572287 cites W3100726716 @default.
- W3040572287 cites W3106040729 @default.
- W3040572287 cites W3186877027 @default.
- W3040572287 cites W4214815892 @default.
- W3040572287 cites W4229690001 @default.
- W3040572287 cites W4232277851 @default.
- W3040572287 cites W4246804796 @default.
- W3040572287 doi "https://doi.org/10.1090/tran/8561" @default.
- W3040572287 hasPublicationYear "2021" @default.
- W3040572287 type Work @default.
- W3040572287 sameAs 3040572287 @default.
- W3040572287 citedByCount "4" @default.
- W3040572287 countsByYear W30405722872020 @default.
- W3040572287 countsByYear W30405722872022 @default.
- W3040572287 countsByYear W30405722872023 @default.
- W3040572287 crossrefType "journal-article" @default.
- W3040572287 hasAuthorship W3040572287A5067399811 @default.
- W3040572287 hasAuthorship W3040572287A5074399186 @default.
- W3040572287 hasAuthorship W3040572287A5089861556 @default.
- W3040572287 hasBestOaLocation W30405722871 @default.
- W3040572287 hasConcept C11413529 @default.
- W3040572287 hasConcept C154945302 @default.
- W3040572287 hasConcept C18903297 @default.
- W3040572287 hasConcept C2776321320 @default.
- W3040572287 hasConcept C2777299769 @default.
- W3040572287 hasConcept C33923547 @default.
- W3040572287 hasConcept C41008148 @default.
- W3040572287 hasConcept C86803240 @default.
- W3040572287 hasConceptScore W3040572287C11413529 @default.
- W3040572287 hasConceptScore W3040572287C154945302 @default.
- W3040572287 hasConceptScore W3040572287C18903297 @default.
- W3040572287 hasConceptScore W3040572287C2776321320 @default.
- W3040572287 hasConceptScore W3040572287C2777299769 @default.
- W3040572287 hasConceptScore W3040572287C33923547 @default.
- W3040572287 hasConceptScore W3040572287C41008148 @default.
- W3040572287 hasConceptScore W3040572287C86803240 @default.
- W3040572287 hasFunder F4320306193 @default.
- W3040572287 hasIssue "3" @default.
- W3040572287 hasLocation W30405722871 @default.
- W3040572287 hasLocation W30405722872 @default.
- W3040572287 hasOpenAccess W3040572287 @default.
- W3040572287 hasPrimaryLocation W30405722871 @default.
- W3040572287 hasRelatedWork W1529400504 @default.
- W3040572287 hasRelatedWork W1892467659 @default.
- W3040572287 hasRelatedWork W2045715842 @default.
- W3040572287 hasRelatedWork W2105880240 @default.
- W3040572287 hasRelatedWork W2349865494 @default.
- W3040572287 hasRelatedWork W2372553222 @default.
- W3040572287 hasRelatedWork W2808586768 @default.
- W3040572287 hasRelatedWork W2925832130 @default.
- W3040572287 hasRelatedWork W2998403542 @default.
- W3040572287 hasRelatedWork W3157620392 @default.
- W3040572287 hasVolume "375" @default.
- W3040572287 isParatext "false" @default.
- W3040572287 isRetracted "false" @default.
- W3040572287 magId "3040572287" @default.
- W3040572287 workType "article" @default.