Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040578633> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3040578633 abstract "This paper presents a binary classification of entrepreneurs in British historical data based on the recent availability of big data from the I-CeM dataset. The main task of the paper is to attribute an employment status to individuals that did not fully report entrepreneur status in earlier censuses (1851-1881). The paper assesses the accuracy of different classifiers and machine learning algorithms, including Deep Learning, for this classification problem. We first adopt a ground-truth dataset from the later censuses to train the computer with a Logistic Regression (which is standard in the literature for this kind of binary classification) to recognize entrepreneurs distinct from non-entrepreneurs (i.e. workers). Our initial accuracy for this base-line method is 0.74. We compare the Logistic Regression with ten optimized machine learning algorithms: Nearest Neighbors, Linear and Radial Support Vector Machine, Gaussian Process, Decision Tree, Random Forest, Neural Network, AdaBoost, Naive Bayes, and Quadratic Discriminant Analysis. The best results are boosting and ensemble methods. AdaBoost achieves an accuracy of 0.95. Deep-Learning, as a standalone category of algorithms, further improves accuracy to 0.96 without using the rich text-data that characterizes the OccString feature, a string of up to 500 characters with the full occupational statement of each individual collected in the earlier censuses. Finally, and now using this OccString feature, we implement both shallow (bag-of-words algorithm) learning and Deep Learning (Recurrent Neural Network with a Long Short-Term Memory layer) algorithms. These methods all achieve accuracies above 0.99 with Deep Learning Recurrent Neural Network as the best model with an accuracy of 0.9978. The results show that standard algorithms for classification can be outperformed by machine learning algorithms. This confirms the value of extending the techniques traditionally used in the literature for this type of classification problem." @default.
- W3040578633 created "2020-07-10" @default.
- W3040578633 creator A5018761236 @default.
- W3040578633 creator A5053525387 @default.
- W3040578633 creator A5074927010 @default.
- W3040578633 creator A5084812340 @default.
- W3040578633 date "2019-01-01" @default.
- W3040578633 modified "2023-09-23" @default.
- W3040578633 title "Machine learning classification of entrepreneurs in British historical census data" @default.
- W3040578633 hasPublicationYear "2019" @default.
- W3040578633 type Work @default.
- W3040578633 sameAs 3040578633 @default.
- W3040578633 citedByCount "0" @default.
- W3040578633 crossrefType "posted-content" @default.
- W3040578633 hasAuthorship W3040578633A5018761236 @default.
- W3040578633 hasAuthorship W3040578633A5053525387 @default.
- W3040578633 hasAuthorship W3040578633A5074927010 @default.
- W3040578633 hasAuthorship W3040578633A5084812340 @default.
- W3040578633 hasConcept C108583219 @default.
- W3040578633 hasConcept C119857082 @default.
- W3040578633 hasConcept C12267149 @default.
- W3040578633 hasConcept C141404830 @default.
- W3040578633 hasConcept C154945302 @default.
- W3040578633 hasConcept C169258074 @default.
- W3040578633 hasConcept C41008148 @default.
- W3040578633 hasConcept C50644808 @default.
- W3040578633 hasConcept C52001869 @default.
- W3040578633 hasConcept C66905080 @default.
- W3040578633 hasConcept C69738355 @default.
- W3040578633 hasConcept C84525736 @default.
- W3040578633 hasConceptScore W3040578633C108583219 @default.
- W3040578633 hasConceptScore W3040578633C119857082 @default.
- W3040578633 hasConceptScore W3040578633C12267149 @default.
- W3040578633 hasConceptScore W3040578633C141404830 @default.
- W3040578633 hasConceptScore W3040578633C154945302 @default.
- W3040578633 hasConceptScore W3040578633C169258074 @default.
- W3040578633 hasConceptScore W3040578633C41008148 @default.
- W3040578633 hasConceptScore W3040578633C50644808 @default.
- W3040578633 hasConceptScore W3040578633C52001869 @default.
- W3040578633 hasConceptScore W3040578633C66905080 @default.
- W3040578633 hasConceptScore W3040578633C69738355 @default.
- W3040578633 hasConceptScore W3040578633C84525736 @default.
- W3040578633 hasLocation W30405786331 @default.
- W3040578633 hasOpenAccess W3040578633 @default.
- W3040578633 hasPrimaryLocation W30405786331 @default.
- W3040578633 hasRelatedWork W148406200 @default.
- W3040578633 hasRelatedWork W2007105596 @default.
- W3040578633 hasRelatedWork W2280758122 @default.
- W3040578633 hasRelatedWork W2290613814 @default.
- W3040578633 hasRelatedWork W2399202621 @default.
- W3040578633 hasRelatedWork W2898501999 @default.
- W3040578633 hasRelatedWork W2905979201 @default.
- W3040578633 hasRelatedWork W2955141036 @default.
- W3040578633 hasRelatedWork W2993309345 @default.
- W3040578633 hasRelatedWork W2995674643 @default.
- W3040578633 hasRelatedWork W3094100291 @default.
- W3040578633 hasRelatedWork W3096082097 @default.
- W3040578633 hasRelatedWork W3114736863 @default.
- W3040578633 hasRelatedWork W3127061291 @default.
- W3040578633 hasRelatedWork W3127068712 @default.
- W3040578633 hasRelatedWork W3142220509 @default.
- W3040578633 hasRelatedWork W3163798003 @default.
- W3040578633 hasRelatedWork W3208334311 @default.
- W3040578633 hasRelatedWork W87284930 @default.
- W3040578633 hasRelatedWork W2744600799 @default.
- W3040578633 isParatext "false" @default.
- W3040578633 isRetracted "false" @default.
- W3040578633 magId "3040578633" @default.
- W3040578633 workType "article" @default.