Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040587720> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3040587720 abstract "An important use case in fifth generation systems are vehicular applications, where, reliability and low latency are the main requirements. In order to determine if a vehicular application can be used one can apply machine learning (ML) tools to determine if these constraints are met, which open questions such as “which data is available”, “which features to use”, “the quality of this prediction”, etc. In this paper we address some aspects of predicting quality-of-service (QoS) in a cellular vehicular-to-everything scenario, where we employ supervised learning as well as the autoregressive integrated moving average filter to predict if a packet can be delivered within a desired latency window. Particularly, we are interested in the reliability of this prediction, including predicting if a packet generated some time ahead will be delivered in time. Such information is essential when asserting that a vehicular application can indeed be employed safely. We show via simulation results that ML can be used as a prediction tool in vehicular applications. For instance, QoS levels can be predicted two seconds ahead with 85 % reliability." @default.
- W3040587720 created "2020-07-10" @default.
- W3040587720 creator A5018857418 @default.
- W3040587720 creator A5046884610 @default.
- W3040587720 creator A5059780663 @default.
- W3040587720 creator A5061118449 @default.
- W3040587720 creator A5081187532 @default.
- W3040587720 date "2020-05-01" @default.
- W3040587720 modified "2023-09-30" @default.
- W3040587720 title "QoS Predictability in V2X Communication with Machine Learning" @default.
- W3040587720 cites W2735422752 @default.
- W3040587720 cites W2802897269 @default.
- W3040587720 cites W2962946835 @default.
- W3040587720 doi "https://doi.org/10.1109/vtc2020-spring48590.2020.9129490" @default.
- W3040587720 hasPublicationYear "2020" @default.
- W3040587720 type Work @default.
- W3040587720 sameAs 3040587720 @default.
- W3040587720 citedByCount "13" @default.
- W3040587720 countsByYear W30405877202020 @default.
- W3040587720 countsByYear W30405877202021 @default.
- W3040587720 countsByYear W30405877202022 @default.
- W3040587720 countsByYear W30405877202023 @default.
- W3040587720 crossrefType "proceedings-article" @default.
- W3040587720 hasAuthorship W3040587720A5018857418 @default.
- W3040587720 hasAuthorship W3040587720A5046884610 @default.
- W3040587720 hasAuthorship W3040587720A5059780663 @default.
- W3040587720 hasAuthorship W3040587720A5061118449 @default.
- W3040587720 hasAuthorship W3040587720A5081187532 @default.
- W3040587720 hasConcept C119857082 @default.
- W3040587720 hasConcept C121332964 @default.
- W3040587720 hasConcept C154945302 @default.
- W3040587720 hasConcept C158379750 @default.
- W3040587720 hasConcept C163258240 @default.
- W3040587720 hasConcept C192448918 @default.
- W3040587720 hasConcept C197640229 @default.
- W3040587720 hasConcept C31258907 @default.
- W3040587720 hasConcept C41008148 @default.
- W3040587720 hasConcept C43214815 @default.
- W3040587720 hasConcept C5119721 @default.
- W3040587720 hasConcept C555944384 @default.
- W3040587720 hasConcept C62520636 @default.
- W3040587720 hasConcept C76155785 @default.
- W3040587720 hasConcept C79403827 @default.
- W3040587720 hasConcept C82876162 @default.
- W3040587720 hasConcept C94523657 @default.
- W3040587720 hasConceptScore W3040587720C119857082 @default.
- W3040587720 hasConceptScore W3040587720C121332964 @default.
- W3040587720 hasConceptScore W3040587720C154945302 @default.
- W3040587720 hasConceptScore W3040587720C158379750 @default.
- W3040587720 hasConceptScore W3040587720C163258240 @default.
- W3040587720 hasConceptScore W3040587720C192448918 @default.
- W3040587720 hasConceptScore W3040587720C197640229 @default.
- W3040587720 hasConceptScore W3040587720C31258907 @default.
- W3040587720 hasConceptScore W3040587720C41008148 @default.
- W3040587720 hasConceptScore W3040587720C43214815 @default.
- W3040587720 hasConceptScore W3040587720C5119721 @default.
- W3040587720 hasConceptScore W3040587720C555944384 @default.
- W3040587720 hasConceptScore W3040587720C62520636 @default.
- W3040587720 hasConceptScore W3040587720C76155785 @default.
- W3040587720 hasConceptScore W3040587720C79403827 @default.
- W3040587720 hasConceptScore W3040587720C82876162 @default.
- W3040587720 hasConceptScore W3040587720C94523657 @default.
- W3040587720 hasLocation W30405877201 @default.
- W3040587720 hasOpenAccess W3040587720 @default.
- W3040587720 hasPrimaryLocation W30405877201 @default.
- W3040587720 hasRelatedWork W1490770987 @default.
- W3040587720 hasRelatedWork W1527837723 @default.
- W3040587720 hasRelatedWork W2014575076 @default.
- W3040587720 hasRelatedWork W2091999583 @default.
- W3040587720 hasRelatedWork W2118112569 @default.
- W3040587720 hasRelatedWork W2579649118 @default.
- W3040587720 hasRelatedWork W2917041690 @default.
- W3040587720 hasRelatedWork W2917701982 @default.
- W3040587720 hasRelatedWork W2961085424 @default.
- W3040587720 hasRelatedWork W2462194024 @default.
- W3040587720 isParatext "false" @default.
- W3040587720 isRetracted "false" @default.
- W3040587720 magId "3040587720" @default.
- W3040587720 workType "article" @default.