Matches in SemOpenAlex for { <https://semopenalex.org/work/W3040647568> ?p ?o ?g. }
- W3040647568 endingPage "108" @default.
- W3040647568 startingPage "108" @default.
- W3040647568 abstract "A machine learning technique that imitates neural system and brain can provide better than traditional methods like logistic regression for survival prediction and create an algorithm by determining influential factors.To determine the influential factors on survival time of palliative care cancer patients and to compare two statistical methods for better prediction of survival.One-year data is gathered from the patients that we followed in the palliative care clinic of our hospital (2017-2018) (n = 189). All data were retrospectively evaluated. After descriptive statistics, we used Pearson and Spearman correlations for parametric and non-parametric variables. The Artificial Neural Networks (ANN) and logistic regression model were applied to parameters which have a significant correlation with short survival.Significantly correlated variables with short survival were Palliative Performance Scale (PPS), Edmonton Symptom Assessment System (ESAS), Karnofsky Performance Scale (KPS), brain, liver, and distant metastasis, hemogram parameters, cero-reactive protein (CRP) and albumin (ALB). ANN model showed 89.3% prediction accuracy while the logistic regression model showed 73.0%. ANN model achieved a better AUC value of 0.86 than logistic regression model (0.76).There are several prognostic evaluation tools such as PPS, KPS, CRP, albumin, leukocytes, neutrophil were reported several studies as survival-related parameters in logistic regression models, also. Many studies compare ANN with logistic regression. When we evaluated these parameters totally, we observed the same relations with survival then we used the same parameters in the ANN model. The effectivity of the survival prediction models can be improved with the use of ANN.ANN provides a more accurate estimation than logistic regression. ANN model is an important statistical method for survival prediction of cancer patients." @default.
- W3040647568 created "2020-07-10" @default.
- W3040647568 creator A5000278266 @default.
- W3040647568 creator A5047884781 @default.
- W3040647568 creator A5064016104 @default.
- W3040647568 date "2020-01-01" @default.
- W3040647568 modified "2023-09-27" @default.
- W3040647568 title "Comparison of Artificial Neural Networks and Logistic Regression for 30-days Survival Prediction of Cancer Patients" @default.
- W3040647568 cites W1540597656 @default.
- W3040647568 cites W1557523978 @default.
- W3040647568 cites W1595030384 @default.
- W3040647568 cites W1608689417 @default.
- W3040647568 cites W1901146837 @default.
- W3040647568 cites W1973938903 @default.
- W3040647568 cites W1983450660 @default.
- W3040647568 cites W1987260005 @default.
- W3040647568 cites W1988881617 @default.
- W3040647568 cites W1996089190 @default.
- W3040647568 cites W2030691215 @default.
- W3040647568 cites W2056862019 @default.
- W3040647568 cites W2060952751 @default.
- W3040647568 cites W2070947156 @default.
- W3040647568 cites W2083467923 @default.
- W3040647568 cites W2095753160 @default.
- W3040647568 cites W2099729056 @default.
- W3040647568 cites W2106028851 @default.
- W3040647568 cites W2107813339 @default.
- W3040647568 cites W2116976533 @default.
- W3040647568 cites W2135503946 @default.
- W3040647568 cites W2139167816 @default.
- W3040647568 cites W2139778116 @default.
- W3040647568 cites W2155490978 @default.
- W3040647568 cites W2160637956 @default.
- W3040647568 cites W2270004474 @default.
- W3040647568 cites W2278877986 @default.
- W3040647568 cites W2337300757 @default.
- W3040647568 cites W2389512132 @default.
- W3040647568 cites W2412771798 @default.
- W3040647568 cites W2515359515 @default.
- W3040647568 cites W2594069297 @default.
- W3040647568 cites W2623774916 @default.
- W3040647568 cites W2897268237 @default.
- W3040647568 cites W2904803701 @default.
- W3040647568 cites W2905004470 @default.
- W3040647568 cites W2919115771 @default.
- W3040647568 cites W2921566548 @default.
- W3040647568 doi "https://doi.org/10.5455/aim.2020.28.108-113" @default.
- W3040647568 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7382770" @default.
- W3040647568 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32742062" @default.
- W3040647568 hasPublicationYear "2020" @default.
- W3040647568 type Work @default.
- W3040647568 sameAs 3040647568 @default.
- W3040647568 citedByCount "9" @default.
- W3040647568 countsByYear W30406475682020 @default.
- W3040647568 countsByYear W30406475682021 @default.
- W3040647568 countsByYear W30406475682022 @default.
- W3040647568 countsByYear W30406475682023 @default.
- W3040647568 crossrefType "journal-article" @default.
- W3040647568 hasAuthorship W3040647568A5000278266 @default.
- W3040647568 hasAuthorship W3040647568A5047884781 @default.
- W3040647568 hasAuthorship W3040647568A5064016104 @default.
- W3040647568 hasBestOaLocation W30406475682 @default.
- W3040647568 hasConcept C10515644 @default.
- W3040647568 hasConcept C105795698 @default.
- W3040647568 hasConcept C119857082 @default.
- W3040647568 hasConcept C126322002 @default.
- W3040647568 hasConcept C151956035 @default.
- W3040647568 hasConcept C152877465 @default.
- W3040647568 hasConcept C154945302 @default.
- W3040647568 hasConcept C159110408 @default.
- W3040647568 hasConcept C2994186709 @default.
- W3040647568 hasConcept C33923547 @default.
- W3040647568 hasConcept C41008148 @default.
- W3040647568 hasConcept C50644808 @default.
- W3040647568 hasConcept C71924100 @default.
- W3040647568 hasConceptScore W3040647568C10515644 @default.
- W3040647568 hasConceptScore W3040647568C105795698 @default.
- W3040647568 hasConceptScore W3040647568C119857082 @default.
- W3040647568 hasConceptScore W3040647568C126322002 @default.
- W3040647568 hasConceptScore W3040647568C151956035 @default.
- W3040647568 hasConceptScore W3040647568C152877465 @default.
- W3040647568 hasConceptScore W3040647568C154945302 @default.
- W3040647568 hasConceptScore W3040647568C159110408 @default.
- W3040647568 hasConceptScore W3040647568C2994186709 @default.
- W3040647568 hasConceptScore W3040647568C33923547 @default.
- W3040647568 hasConceptScore W3040647568C41008148 @default.
- W3040647568 hasConceptScore W3040647568C50644808 @default.
- W3040647568 hasConceptScore W3040647568C71924100 @default.
- W3040647568 hasIssue "2" @default.
- W3040647568 hasLocation W30406475681 @default.
- W3040647568 hasLocation W30406475682 @default.
- W3040647568 hasLocation W30406475683 @default.
- W3040647568 hasOpenAccess W3040647568 @default.
- W3040647568 hasPrimaryLocation W30406475681 @default.
- W3040647568 hasRelatedWork W1965996707 @default.
- W3040647568 hasRelatedWork W1985231403 @default.
- W3040647568 hasRelatedWork W2076729751 @default.
- W3040647568 hasRelatedWork W2086639915 @default.